SYBASE

Performance and Tuning Series:
Query Processing and Abstract Plans

Adaptive Server® Enterprise
15.x

DOCUMENT ID: DC00743-01-1500-01
LAST REVISED: September 2007

Copyright © 1987-2007 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

PN oo 10) A I g =T o o PRSP iX
CHAPTER 1 Understanding QUery ProCesSingcoccevuvverirerrereeeeseesseennvnenenens 1
(O 181=T Vo] o 11140174~ SR PERRR 3
Factors analyzed in optimizing qQUErIeScccccvveeeiiiciiineeeeenn. 5
Transformations for query optimizationccccceeviviviieeenennnn, 7
Handling search arguments and useful indexes 11
HandliNg JOINSuuiiiiiiiiiie e 13
OpPtMIZAtioN GOAIS.......coiiiiiiiiiiee e 15
EXCEPLIONS ..ottt 16
Limiting the time spent optimizing a qUeryccccceeevvrvvveenn. 16
ParalleliSM..........ooi i 18
OPtMIZAtION ISSUESccceviviiiiiee ettt e s ssre e e e s e e e e e e s eenes 18
Query eXeCUution ENGINEcveeeeeiiiiriiieeeeeesiirrere e e e e srrreeeeee e e 22
QUETY PlANS ... 22
CHAPTER 2 USING SNOWPIAN.....ciiiiiiieee e 29
Displaying a qUErY Plancccuviiiiiee e 29
Query plans in Adaptive Server Enterprise 15.0ccccceeeeneee 30
Statement-level QULPULcoooiiiiiiii e 30
QUETY Plan SNAPEccoiiiiiiie 33
QuUETY Plan OPEratOrS........ccviiiiiiiiiiiiiee e 37
ML OPEIALOT ...eiiiei ittt ettt e e e e e e s s anaees 38
SCAN OPEIALTON e 38
from cache mesSageccvvvvvieiiiiiiiiiie e 38
FIOM OF lIST...eeeii e 38
fromM table ... 40
(WTa]To] g [o] o1=] =1 0] (= F OO RSRPR 74
UNION @ll OPEIALOT......eviieeiiiciiiiee e 74
MErQgE UNION OPEIALON . eevieeeeiiiiiiieeeeeesiiitrreeeeeeessinnnereeeeeeasnnnns 75
hash UNIONooiii e 76
ScalarAggOP OPEratOr.......ccuvviiiieeeeeecirrire e e e e e 77
FESIICT OPEIALON ..vieiiie et 78

Query Processing and Abstract Plans iii

Contents

CHAPTER 3

CHAPTER 4

SOMt OPEIATON . s 78
STOIE OPEIALON ..o 80
SEQUENCET OPEIALON ... 82
FEMOLE SCAN OPEIATON ...c.vvieieieeieeeiteeeseieesiie e et e eeeeeseeeesaeeeeneeas 84
(o o] | I] o J=1 - L (o SRR 84

(Lo I ol gl o] o 1T - (o] S SPPR 86

(0 |11 G o] o 1=] = (o] ST SRRR 88
€XChANQE OPEIALONvvveeeiciiiiiiee e e e st e e a e e s 89
Instead-of trigger OPEratorS.........cueeiicciiriiiee et 92
instead-of trigger OPEratorccovvuvvviieeee e 92
CURSOR SCAN OPEratorccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 94
Displaying Query Optimization Strategies and Estimates......... 97
set commands for text format mesSagescccceeveevvvvviiieeieenniinnns 97
set commands for XML format mesSages........cccceevvvvvvvieeeneeeniinnns 98
Using show_execio_xml to diagnose query plans................. 100
USAQE SCENATIOS ..oooiiieiiiieee ettt e e e e s s et e e e e e s s sibbbae e e e e e s s snnbeeeeas 102
Permissions for set commandscccoooeeeeiiiiiie e 105
Tracing COMMANGS.......cccoiiuiiiiieeee i it e e e e et e e e e e s earrareraae e 105
Parallel QUEry ProCeSSiNguueeiiiiieeieeiiiiiiieeereeeee e e s e s seneeneeeeens 107
Vertical, horizontal, and pipelined parallelismcccccvveee..n. 107
Queries that benefit from parallel processing..........ccccccvvvveeeeiinnns 108
Enabling paralleliSmcooiiiiiiiie e 109
Setting the number of worker processes.........ccccccceevviiivnnnn. 109
Setting max parallel degree.........cccccevvviiiiiiiieniniiiieeeeeen 110
Setting max resource granularity...........cccvveeeeeeiniiiiiiieeneennns 110
Setting max repartition degreeccoovvvviiveeeeiiiiiiiiiieeeeeen 111
Setting max scan parallel degree.........ccccceeeeviiiiiiiieiiee s 111
Setting prod-consumer overlap factorcccocccvviviieeninins 112
Setting min pages for parallel scanccccccoovvvviiiieiieeniinns 112
Setting max query parallel degree.........cccccevevviiviiieeeeeeciinns 112
Controlling parallelism at the session levelcccccvvvvieeeennnnn, 113
set command examplescccovvveeeeiiiiiee e 114
Controlling query paralleliSm..........ccccvveeeeeiiiiiiieee e 114
Query-level parallel clause examples.......cccccccovvcviiieieeeeiinnns 115
Using parallelism selectivelyoooveeiiiiiiiiieieeeciiieeee e 115
Using parallelism with large numbers of partitions....................... 116
When parallel query results differ..........cccccceienniiicie, 118
Queries that use set rowCoUNt.........ccceeeeeeeeeeiieeeeeeeeeeeeeeeee, 119
Queries that set local variablesccccoeeeeeeiiieeeeeeeee, 119
Understanding parallel query plans..........ccccccceeeeeniiiiieeee s 119
Adaptive Server parallel query execution model............ccccuveeenn. 122

Adaptive Server Enterprise

Contents

E€XChaNQe OPEIALONccvieeiiiciiiiiie e e e e e e e e 122
Using parallelism in SQL operationsccccvveeeeeeeiecvvnnnnn. 127
Partition eliminationcccco i 171
Partition SKEWcoiiiiiiiiiiiiei e 172
Why queries do not run in parallel...........ccccovceeiiiiiiiiiennnnn, 173
Runtime adjustmenteeviiiiiiiiiii e 173
Recognizing and managing runtime adjustments 174
CHAPTER 5 Controlling Optimization ... 177
Special optimizing teChNIQUEScuvvviiiiiiiiiiiiiee e 177
Specifying query processor ChOICES..........ccvvvevieeiiiiiiiiiieiee s 178
Specifying table order in oINScvvvvveieiiiciee e 179
Risks of using forceplanccccccoeviiiiiiie e 180
Things to try before using forceplan...........cccccccoeeiviiiiiinnnnnn, 180
Specifying the number of tables considered by the query processor..
181

Specifying an qUEry iNAEXccocuuiiiiieeee e 182
RISKS ...ttt 183
Things to try before specifying an indeX...........ccccoovcvvieeiennn. 183
Specifying 1/O Siz€ iN @ QUETY.....ccuvuiiiieeeeeiiiiiiieee e 184
Index type and large /O Size........cccvveeeeiiiiiiiiiiee e 185
When prefetch specification is not followedccccceeee. 186
setting PrefetCh ... 187
Specifying cache Strategycoovcuviiieeee e 187
In select, delete, and update statements..............cccvvveeeeeenn. 188
Controlling large 1/0 and cache strategies.............cecvvvvvveeeeiinnnns 189
Getting information on cache strategies............ccccvvevveeeriiinnns 189
ASYNChroN0US 10Qg SEIVICEuuviiiieeeiiiiiiiiiee e 189
Understanding the user log cache (ULC) architecture 191
When t0 USE ALSoiiiiiiiie e 191
USING The ALS ..o 192
Changed system proCedurescccccvvviviieeeeeeniiiiiiiieeeeeenn 193
Enabling and disabling merge joinscccccoeviiiiiiieeiee i, 193
Enabling and disabling hash joins...........ccoccccciiiiiiiis 194
Enabling and disabling join transitive closureccccccovvvvvnneen. 194
Suggesting a degree of parallelism for a query........cccccceveerniiins 195
Query level parallel clause examples.......ccccccovecvviiiiieeeeiinnns 197
OptimIization gOalS........ccveiiieei i 197
Setting optimization goalsccccceeeeeiiiiiiiieee e 198
OptimIization CrLEIAvvviiee i 199
Limiting optimization time..........cccceeee i 202
Controlling parallel optimizationcccccoccviiiieee e 203
Specifying the maximum number of worker processes......... 203

Specifying the number of worker processes available for parallel

Query Processing and Abstract Plans v

Contents

PrOCESSING ...vvvvviieeeeiiiiieie e e e e sttt e e e e s s e e e e e s abbeeees 204
Specifying the percentage of resources available to process a
(0 U= o P PP P PP PP PPPPPPPPPPPPPPN 204
Specifying the number of worker processes available to partition a
data StreaM.....ccoiiiii e 205
Concurrency optimization for small tablesccccevvvieeiiinnns 205
Changing locking schemeccccccooiiiiiiiie e, 206
CHAPTER 6 Using Statistics to Improve Performancecoccciiiiiiineen. 207
Statistics maintained in Adaptive Server.........ccccccoovcciveeereeeniinnns 207
DEfiNItiONS.coiiiiiiee et 208
Importance of StatiStiCSc.vvevieiviiiii e 208
Updating StatiStCSvvveiieei it 209
Adding statistics for unindexed columnsccoccvvvieeneennn, 210
update statistics CommMandscccvvvevieeeiiniiiiiiiie e 210
Using sampling for update statistics..........cccccceveeviiiviieeeneennn, 212
Automatically updating StatiStiCsc.uvvvveeeiiiiiiiiiiee e, 213
What is the datachange function?...........cccccccee i iviiiiieeneeen, 214
Configuring automatic update statistiCsccccceeeviviiiiiiiieeeennns 216
Using Job Scheduler to update statisticscccvvvverennn. 216
Examples of updating statistics with datachange.................. 219
Column statistics and statistics maintenance...........ccccccceeevvuneen.. 219
Creating and updating column StatiStiCScccccevvvvvviiierieeniinnns 221
When additional statistics may be usefulccccvveeennenn. 222
Adding statistics for a column with update statistics 224
Adding statistics for minor columns with update index statistics ..
224
Adding statistics for all columns with update all statistics 225
Choosing step numbers for histogramsccccccovvviiiiiiienniinns 225
Disadvantages of to0 many StepSccccvvveveeeeviiiiiieeeeeeen, 225
Choosing a step NUMDBETvvvieeiiiie e, 226
Scan types, sort requirements, and l0CKiNgccccecvveeeniinnnns 226
Sorts for unindexed or non-leading columns..............c.......... 227
Locking, scans, and sorts during update index statistics 228
Locking, scans and sorts during update all statistics 228
Using the with consumers Clause...........occcvvvvevieeiiiiiiineenenenn, 228
Reducing update statistics impact on concurrent processes 228
Using the delete statistics command............ccccccoviiiiiiieeneennniinns 229
When row counts may be inaccurateccccccovvviiieniieniiiieen, 230
CHAPTER 7 Introduction to Abstract Plans ..., 231
OVEIVIBW ...ttt 231
Managing abstract plansueeeiiiiiiii 232

Vi Adaptive Server Enterprise

Contents

Relationship between query text and query plansc........ 233
Limits of options for influencing query planscc........ 233

Full versus partial plansccceviieeiiiciiiiecee e 234
Creating a partial plan ... 235
ADSEract plan groUPSooooieiiiiiiie e 236
How abstract plans are associated with queries................cccuvveee.. 236
CHAPTER 8 Creating and Using Abstract Plansccccccceeiiiiiiiniiiiiiiin 239
Using set commands to capture and associate plans.................. 239
Enabling plan capture mode with set plan dump................... 240
Associating queries with stored plansccccccoovvviiiieennnnn, 241
Using replace mode during plan capture.........ccccccceevievvnnen. 241
Using dump, load, and replace modes simultaneously 242

set plan exists check OpPtioNccccuvvieee i 244
Using other set options with abstract plans............cccccceeeiiiiineen. 244
USiNg ShOWPIANovieiiiiie e 245
USING NOEXEC.....uuiuiiieeeiiieiiieeeiaeesseiatiraeeea e e s s snnnbaaeeaaeessannssneees 245
USING FMEONIY ..o 245
USING fOrCEPIAN ...evvviieiiiiiiiiee e 246
Server-wide abstract plan capture and association modes.......... 246
Creating plans using SQLccooviiiiiiiiirieieiiiiieee e 247
UsSing create Planooccvveeeiiieiiiiiiieie e 247
Using the plan Clausec..uvvveiiiiiiiiiiiee e 248
CHAPTER 9 Abstract Query Plan GUIEccvvvveeeieiieei e 251
11 To (Ui (o] o RO PR PRI 251
Abstract plan language.........cccccoeevviiiiiee e 252
Identifying tablesccvveiieeiiic e 255
Identifying INAEXES........uvvviiiee e 257
SPECIfying JOIN OFAENccoiiiiiiiiiie e 257
Specifying the JoIN tYPecoovviiiiiiieeeeeee e 261
Specifying partial plans and hints............cccccco i, 262
Creating abstract plans for subqueries.............cccccvviininns 265
Abstract plans for materialized Viewscccccccvvviiiiienneennn, 272
Abstract plans for queries containing aggregates 273
Abstract plans for queries containing UnioNns.............cccceeee.... 274
Using abstract plans when queries need ordering 276
Specifying the reformatting strategy........ccccccovvvvviveieinenninnnns 276
Specifying the OR Strategy.......cccveeeeeeiiiiiiiiieeeeeesiiiieeee e 277
When the store operator is not specified...............ccccvvvveennn. 277
Abstract plans for parallel processingcccccceeevviiciieenennn, 278
Tips on writing abstract plans...........cccceeeeeiiciiiieee e 279
Comparing plans before and after...........cccoccvvieveieeiiiciiiieee e 280

Query Processing and Abstract Plans Vii

Contents

Effects of enabling server-wide capture modecc....... 281
Time and space to COPY PlanS.......ccovevvviiiviiieeeeeiiiiiiiieeeeeen 282
Abstract plans for stored procedurescccccovvvviiienieeniniiivenen. 282
Procedures and plan ownership........ccccccvvviiivieeee e, 283
Procedures with variable execution paths and optimization.. 283

Ad hoc queries and abstract plans..........cccccccoeeviiiiieee e 284
CHAPTER 10 Managing Abstract Plans with System Procedures. 285
System procedures for managing abstract plans......................... 285
Managing an abstract plan group.......ccccoccevvvveeeeeees i 286
Creating @ grOUP......uuuvreeeeiieiriinereeeeesesiiirrreeeeesssnnnnneeeeeeeaannns 286
Dropping @ grOUP....ccoouiurrreeiee e isitiieeteee e s ssiiireree e e s s sseinaeeeeee s 287
Getting information about @ group.........ccceeveeeviiiiiiiiiiine s 287
ReENaMING @ GroUPcooiiiiiiiiee et 289
Finding abstract plans ... 290
Managing individual abstract plansccccccceeiiniiiiiieee s 290
VIEWING @ PIaN ..cooooiiiiiii e 291
Copying a plan to another groupcccovvveveeeeeviiiiiiiieeeeee, 291
Dropping an individual abstract plan..........ccccccceeviiiiiiienneenn. 292
Comparing two abstract plans.........cccccoeecvvieeriee i, 292
Changing an existing plancccceeeeviiiiiieeeee e 293
Managing all plans in @ groupcceeevvieiviieereee s e e 294
Copying all plans in @ groupcceeeeeviiiiiiieenie e ceiiieeeeee e 294
Comparing all plans in @ group......ccccccevvivviieeneeeniiiiiieeeeeen 295
Dropping all abstract plans in a group.........cccccceeevvvivivneeennnn. 297
Importing and exporting groups of plans..........cccccccceeiiiiiiiieennn. 298
Exporting plans to a user table...........ccccccoviviiiiiini i, 298
Importing plans from a user table............ccccovvieeiiiiiiiiieennn. 298
CHAPTER 11 Query Processing MEtriCS ...cccccvviiiiiieieee i e e e e e 301
OVEIVIBW ...ttt 301
Executing QP MELNICS....uuviiiiiiiiiieiee ettt e e e e 302
ACCESSING MELTICS ..vvvvvieeeeiiciiiiee e e e e e e s srrreeeae s 302
SYSQUETYMELIICS VIEW .vveeeiiiiiiiiiiieeesseiiiieeeeeeeesesiireneeaaeesannes 302
USING MELICS .ovveeeeiiiiiiiiiie et e e e e e e e ree e s e e e e anaraee s 304
EXAMPIES.. ..t 305
Clearing the MELHCSc.vviiie e 306
Restricting query Metrics Capture.........oovcvvvveeeeeivniiiiieeee e 307
Understanding uid in SySQUErymetricscccccovvveuvvveeeeeeeniivvnneenn. 307
[0 Lo = PR UUPROTP SR 309

viii Adaptive Server Enterprise

About This Book

Audience Thisbook is for System and Database Administrators.
How to use this book This book describes the query processor in Adaptive Server® Enterprise

and how it is used to optimize query processing in Adaptive Server. It also
describes how to create and use abstract query plans.

Chapter 1, “Understanding Query Processing,” providesan overview
of the query processor in Adaptive Server Enterprise.

Chapter 2, “Using showplan,” describes the messages printed by the
showplan utility.

Chapter 3, “Displaying Query Optimization Strategies and
Estimates,” describes the messages printed by the set commands
designed for query optimization.

Chapter 4, “Parallel Query Processing,” describes how Adaptive
Server supports horizontal and vertical parallelism for query
execution.

Chapter 5, “Controlling Optimization,” describes query processing
options that affect the query processor’s choice of join order, index,
I/O size, and cache strategy

Chapter 6, “Using Statisticsto Improve Performance,” explains how
and when to use the commands that manage statistics.

Chapter 7, “Introduction to Abstract Plans,” reviews the basic
concepts of abstract plans.

Chapter 8, “ Creating and Using Abstract Plans,” provides an
overview of the commands used to capture abstract plans and to
associate incoming SQL queries with saved plans.

Chapter 9, “ Abstract Query Plan Guide,” provides guidelines for
your use in writing abstract plans.

Chapter 10, “Managing Abstract Plans with System Procedures,”
provides an introduction to the basic functionality and use of system
procedures for working with abstract plans.

Query Processing and Abstract Plans iX

Chapter 11, “Query Processing Metrics,” explains what query processing
metrics are, what they do, and how you can use them.

Other sources of Use the Sybase® Getting Started CD, the SyBooks ' CD, and the Sybase

information

Product Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manualsin an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks I nstallation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manuals Web siteis an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Sybase certifications Technical documentation at the Sybase Web site is updated frequently.

[IFinding the latest information on product certifications

on the Web
1
2
3
4
5
X

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocsl/.

Select Products from the navigation bar on the | eft.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

Adaptive Server Enterprise

About This Book

[JFinding the latest information on component certifications
1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[JFinding the latest information on EBFs and software maintenance
1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.
Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions This section describes the conventions used in this manual.

Query Processing and Abstract Plans Xi

SQL isafree-formlanguage. There are no rules about the number of wordsyou
can put on aline or where you must break a line. However, for readability, all
exampl es and most syntax statementsin this manual are formatted so that each
clause of astatement beginson anew line. Clausesthat have morethan onepart
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 showsthe conventionsfor syntax statementsthat appear in thismanual :

Table 1: Font and syntax conventions for this manual

Element

Example

Command names, procedure names, utility names,
and other keywords display in sans serif font.

select

sp_configure

Database names and datatypes display in sans serif
font.

master database

File names, variables, and path names display in
italics.

sgl.ini file
column_name
$SYBASE/ASE directory

Variables—or words that stand for valuesthat you fill
in—when they are part of a query or statement,
display initalicsin Courier font.

select column_name
from table name
where search conditions

Type parentheses as part of the command.

compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbol.
Indicates “is defined as’.

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that you have the option to choose one
or more of the enclosed choices. Do not type the
brackets.

[cash | check | credit]

The comma means that you may choose as many of
the options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

Thepipeor vertical bar (|) meansthat you may select
only one of the options shown.

cash | check | credit

Anéllipsis(...) meansthat you can repeat the last unit
as many times asyou like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | creditl]...

You must buy at |east onething and giveits price. You may
choose a method of payment: one of the itemsenclosed in
sguare brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

Xii

Adaptive Server Enterprise

About This Book

e Syntax statements (displaying the syntax and all options for a command)
appear asfollows:

sp_dropdevice [device_name]
For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiersare in lowercase. Italics show user-supplied words.

« Examples showing the use of Transact-SQL " commands are printed like
this:

select * from publishers

e Examples of output from the computer appear as follows:

pub id pub name city state
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server sensitivity to the case of database objects, such astable names,
depends on the sort order installed on Adaptive Server. You can change case
sensitivity for single-byte character sets by reconfiguring the Adaptive Server
sort order. For more information, see the System Administration Guide.

Accessibility Thisdocument is availablein an HTML version that is specialized for
features accessibility. You can navigate the HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

Adaptive Server 15.0 and the HTML documentation have been tested for
compliance with U.S. government Section 508 Accessibility requirements.
Documents that comply with Section 508 generally also meet nonU.S.
accessibility guidelines, such as the World Wide Web Consortium (W3C)
guidelines for Web sites.

Query Processing and Abstract Plans Xiii

The online help for this product is aso provided in HTML, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Xiv Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

This chapter provides an overview of the query processor in Adaptive
Server Enterprise.

Topic Page
Query optimizer 3
Optimization goals 15
Parallelism 18
Optimization issues 18
Query execution engine 22

The query processor processes queries that you specify. The processor
yields highly efficient query plans that execute using minimal resources
and ensure that results are consistent and correct.

To process a query efficiently, the query processor uses:

e The specified query

e Statistics about the tables, indexes, and columns named in the query
« Configurable variables

To successfully process aquery, the query processor must execute several
steps across several modules, which are shown in Figure 1-1:

Query Processing and Abstract Plans 1

Figure 1-1: Query processor modules

Parser

v

Preprocessor

v

Optimizer

v

Code generator

v

Query execution engine

v

Procedural execution engine

* The parser converts the text of the SQL statement to an internal
representation called a query tree.

» The preprocessor transforms the query tree for some types of SQL
statements, such as SQL statements with subqueries and views, to amore
efficient query tree.

e The optimizer analyzes the possible combinations of operations (join
ordering, access and join methods, parallelism) to execute the SQL
statement, and selects an efficient one based on the cost estimates of the
alternatives.

e The code generator converts the query plan generated by the optimizer
into a format more suitable for the query execution engine.

e Theprocedura engine executes command statements such as create table,
execute procedure, and declare cursor directly. For data manipulation
language (DML) statements, such as select, insert, delete, and update, the
engine sets up the execution environment for all query plansand callsthe
query execution engine.

» The query execution engine executes the ordered steps specified in the
query plan provided by the code generator.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Query optimizer

The query optimizer provides speed and efficiency for online transaction
processing (OLTP) and operationa decision-support systems (DSS). You can
choose an optimization strategy that best suits your query environment.

The query optimizer is self-tuning, and requires fewer interventions than
earlier versions of Adaptive Server Enterprise. It relies infrequently on
worktables for materialization between steps of operations; however, more
worktables may be used if the optimizer determines that hash and merge
operations are more effective.

Some of the key featuresin the query optimizer include support for:

* New optimization techniques and query execution operator supports that
enhance query performance, such as:

« On-the-fly grouping and ordering operator support using in-memory
sorting and hashing for queries with group by and order by clauses

e hash and MergeJoin operator support for efficient join operations

¢ index union andindex intersection strategiesfor querieswith predicates
on different indexes

The complete list of optimization techniques and operator support in
Adaptive Server islisted in Table 1-1. Many of these techniques map
directly to the operators supported in the query execution. See “Query
execution engine” on page 22.

« Improved index selection, especially for joins with or clauses, and joins
with and search arguments (SARGs) with mismatched but compatible
datatypes.

* Improved costing that employsjoin histograms to prevent inaccuracies that
might otherwise arise due to data skews in joining columns.

* New cost-based pruning and timeout mechanismsin join ordering and plan
strategies for large, multi-way joins, and for star and snowflake schema
joins.

* New optimization techniques to support data and index partitioning

(building blocks for parallelism) that are especially beneficial for very
large data sets.

* Improved query optimization techniques for vertical and horizontal
parallelism. See Chapter 4, “Parallel Query Processing,” for more details.

e Improved problem diagnosis and resolution through:

Query Processing and Abstract Plans 3

Query optimizer

Operator

e Searchable XML format trace outputs

e Detailed diagnostic output from new set commands. See Chapter 11,
“Query Processing Metrics,” for more details.

Table 1-1: Optimization techniques and operator support
Description

hash join

This physical operator supports the hash join algorithm. hash join may consume more
runtime resources, but is valuable when the joining columns do not have useful
indexes or when arelatively large number of rows satisfy thejoin condition, compared
to the product of the number of rowsin the joined tables.

hash union distinct

This physical operator supports the hash union distinct algorithm, which is used to
remove duplicates from multiple datasources. It is used for the SQL UNION operator,
aswell aswhen removing duplicate RIDs from multiple index scansin an OR
optimization. Thisoperator is most effective when few distinct values exist, compared
to the number of rows.

merge join

This physical operator supports the merge join algorithm, which relies on ordered
input. merge join ismost valuablewhen input is ordered on the mergekey, for example,
from an index scan. merge join is less valuable if sort operators are required to order
input.

merge union all

This physical operator supports the merge algorithm for union all. merge union all
maintains the ordering of the result rows from the union input. merge union all is
particularly valuableif the input is ordered and a parent operator (such as merge join)
benefits from that ordering. Otherwise, merge union all may require sort operators that
reduce efficiency.

merge union distinct

This physical operator supports the merge agorithm for union. merge union distinct is
similar to merge union all, except that duplicate rows are not retained. merge union
distinct requires ordered input and provides ordered outpui.

nested-loop-join

Thisphysical operator supportsthe nested-loop-join agorithm. It isthe most common
type of join method and is most useful in simple OLTP queries that do not require
ordering.

append union all

This physical operator supports the append agorithm for union all, which is cheaper
than the merge union all operator, since no ordering is required for inputs and, asa
result, is used when no output ordering is required.

distinct hashing

This physical operator supports a hashing algorithm to eliminate duplicates, whichis
very efficient when there are few distinct values compared to the number of rows.

distinct sorted

Thisphysical operator supports asingle-pass a gorithmto eliminate duplicates. distinct
sorted relieson an ordered input stream, and may increase the number of sort operators
if itsinput is not ordered.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Operator

Description

group sorted

This physical operator supports an on-the-fly grouping agorithm. group sorted relies
on an input stream sorted on the grouping columns, and it preservesthisordering inits
output.

distinct sorting

This physical operator supports the sorting algorithm to eliminate duplicates. distinct
sorting is useful when the input is not ordered (for example, if thereis no index) and
the output ordering generated by the sorting agorithm could benefit; for example, in
amergejoin.

group hashing

Technique

This physical operator supports a group hashing agorithm to process aggregates.

Description

multi table store ind

Determines whether the query optimizer may use Store index operator on the result of
amultiple table join. Using multi table store ind may increase the use of worktables.

opportunistic distinct view

This physica operator supportsamore flexible algorithm when enforcing distinctness.
The operator could be used with flattened EXISTS subqueries as well as DISTINCT
views or SELECT DISTINCT queries.

index intersection

This physical operator supports the intersection of multiple index scans as part of the
query plan in the search space.

store index

This physical operator supports the store index algorithm (sometimes known as
reformatting), which dynamically creates an index on the project restrict of a scan so
that amore efficient nested oop index scan operation can be used when no useful index
exists.

group inserting

This physical operator supports the group by aggregation algorithm that creates a
clustered index work table on the grouping columns and eval uates the aggregate by
inserting rows into the work table.

advanced aggregation

This technique attempts to reduce the number of tuples processed by joins by partially
evaluating aggregates prior to joins. Also, thistechnique evaluates partial aggregates
on each side of a union, rather than processing all the rows of a union prior to

aggregating.

bushy space search

This technique increases the search space to look at more plans that could possibly
improve performance. This may increase compilation time.

replicated partitioning

Factors analyzed

Query Processing and Abstract Plans

This technique applies only to parallel plans in which the performance of parallel
nested loop joins could be helped by multiple scans of the same tablein different
threads.

in optimizing queries

Query plans consist of retrieval tactics and an ordered set of execution steps,
which retrieve the data needed by the query. In devel oping query plans, the
query optimizer examines:

Query optimizer

e Thesize of each tablein the query, both in rows and data pages, and the
number of OAM and all ocation pages to be read.

» Theindexesthat exist on the tables and columnsused in the query, the type
of index, and the height, number of leaf pages, and cluster ratios for each
index.

e Theindex coverage of the query; that is, whether the query can be satisfied
by retrieving data from the index leaf pages without accessing the data
pages. Adaptive Server can use indexes that cover queries, even if no
where clauses are included in the query.

e Thedensity and distribution of keysin the indexes.

» Thesizeof theavailable data cache or caches, the size of 1/O supported by
the caches, and the cache strategy to be used.

e Thecost of physical and logical reads; that is, reads of physical 1/0 pages
from the disk, and of logical /O reads from main memory.

e join clauses, with the best join order and join type, considering the costs and
number of scans required for each join and the usefulness of indexesin
limiting the 1/O.

* Whether building aworktable (an internal, temporary table) with an index
on thejoin columnsisfaster than repeated table scansif there are no useful
indexes for the inner table in ajoin.

» Whether the query contains a max or min aggregate that can use an index
to find the value without scanning the table.

e Whether data or index pages must be used repeatedly, to satisfy a query
such asajoin, or whether afetch-and-discard strategy should be employed
to avoid flushing of the buffer cache of useful pages of other tables, since
the pages of this table need to be scanned only once.

For each plan, the query optimizer determines the total cost by computing the
costs of logical and physical 1/0s, and CPU processing. If there are proxy
tables, additional network related costs are evaluated as well. The query
optimizer then selects the cheapest plan.

Statements in a stored procedure or trigger are optimized when the respective
statements are first executed, and the query plan is stored in the procedure
cache. If arespective statement is not executed, then it will not be optimized
until alater execution of the stored procedure in which the statement is
executed. If other users execute the same procedure while an unused instance
of astored procedure resides in the cache, then that instance is used, and
previous executed statements in that stored procedure are not recompiled.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Transformations for query optimization

After aquery isparsed and preprocessed, but before the query optimizer begins
itsplan analysis, the query istransformed to increase the number of clausesthat
can be optimized. The transformation changes made by the optimizer are
transparent unlessthe output of such query tuning toolsasshowplan, dbcc(200),
statistics io, or the set commands is examined. If you run queries that benefit
from the addition of optimized search arguments, the added clausesarevisible.
In showplan output, these clauses appear as“Keysare” messages for tablesfor
which you specify no search argument or join.

Search arguments converted to equivalent arguments

The optimizer looks for query clauses to convert to the form used for search
arguments. These are listed in Table 1-2.

Table 1-2: Search argument equivalents

Clause Conversion
between Converted to>= and <= clauses. For example, between 10 and 20 isconverted to >= 10 and <= 20.
like If the first character in the pattern is a constant, like clauses can be converted to greater than or

less than queries. For example, like “sm%” becomes >= “sm” and < “sn”.

If the first character is awildcard, a clause such aslike “%x” cannot use an index for access, but
histogram values can be used to estimate the number of matching rows.

in(values_list)

Converted to alist of OR queries, that is, int_col in (1, 2, 3) becomesint_col = 1 or int_col =2 or
int_col = 3.

If the number of IN list elementsis less than 40 then the optimizer uses OR optimization. If the
number of elements is greater than 40, then the optimizer models this as awork table of values
which isjoined to the column associated with the IN list. There is no limit on the number of
membersinthe IN list.

Search argument transitive closure applied where applicable

The optimizer appliestransitive closure to search arguments. For example, the
following query joinstitles and titleauthor on title_id and includes a search
argument on titles.title_id:

select au lname, title
from titles t, titleauthor ta, authors a
where t.title id = ta.title_ id

and a.au_id = ta.au id

and t.title_id = “T81002"

This query isoptimized asif it also included the search argument on
titteauthor.title_id:

Query Processing and Abstract Plans 7

Query optimizer

select au_ lname, title
from titles t, titleauthor ta, authors a
where t.title id = ta.title_id

and a.au_id = ta.au id

and t.title_id = “T81002”

and ta.title_id = “T81002"

With this additional clause, the query optimizer can use index statistics on
titles.title_id to estimate the number of matching rows in the titleauthor table.
The more accurate cost estimates improve index and join order selection.

equijoin predicate transitive closure applied where applicable

The optimizer appliestransitive closure to join columns for a normal equijoin.
Thefollowing query specifies the equijoin of t1.c11 and t2.c21, and the equijoin
of t2.c21 and t3.c31:

select *

from tl, t2, t3

where tl.cll = t2.c21
and t2.c21 = t3.c31
and t3.c31 = 1

Without join transitive closure, the only join ordersconsidered are (11, t2, t3), (t2,
t1, t3), (t2, t3, t1),and (t3, t2, t1). By adding the join ont1.c11 = t3.c31, the query
processor expands the list of join orders with these possibilities: (t1, t3, t2) and
(t3, t1, t2). Search argument transitive closure applies the condition specified
by t3.c31 = 1 to the join columns of t1 and t2.

Similarly, equijoin transitive closure is also applied to equijoins with or
predicates as follows:

select *

from R, S

where R.a = S.a

and (R.a = 5 OR S.b = 6)

The query optimizer infers that the following query would be equivalent to:

select *

from R, S

where R.a = S.a

and (S.a = 5 or S.b = 6)

The or predicate could be evaluated on the scan of S and possibly be used for
an or optimization, thereby using the indexes of Svery effectively.

8 Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Another example of join transitive closure is its application to nonsimple
SARGsS, so that a query such as:

select *
from R, S
where R.a = S.a and (R.a + S.b = 6)

is transformed and inferred as:

select *

from R, S

where R.a = S.a
and (S.a + S.b = 6)

The complex predicate could be evaluated on the scan of S, resulting in
significant performance improvements due to early result-set filtering.

Transitive closure is used only for normal equijoins, as shown. join transitive
closureis not performed for:

* Nonequijoins; for example, t1.c1 > t2.c2
e Outer joins; for example tl.c11 *= t2.c2, or left join or right join
e joins across subquery boundaries

* joins used to check referential integrity or the with check option on views

Note Asof Adaptive Server Enterprise 15.0, thesp_configure optiontoturn on
or off join transitive closure and sort merge join has been discontinued.
Whenever applicable, join transitive closure is always applied in Adaptive
Server Enterprise 15.0 and later.

Predicate transformation and factoring to provide additional optimization paths

Predicate transformation and factoring increases the number of choices
available to the query processor by adding clauses that can be optimized to a
query by extracting clauses from blocks of predicates linked with or into
clauses linked by and. The additional optimized clauses mean that there are
more access paths available for query execution. Whenever possible, the
original OR predicate is modified to reduce the redundant filtering, which also
reduces the CPU consumption.

All of the clauses optimized in this sample query are enclosed in the or clauses:

select p.pub id, price
from publishers p, titles t

Query Processing and Abstract Plans 9

Query optimizer

10

where (
t.pub id = p.pub_ id
and type = “travel”
and price between 15 and 30
and p.pub id in (“P220", “P583", “P780")
)
or (
t.pub id = p.pub_ id
and type = “business”
and price between 15 and 50
and p.pub id in (“P651", “P066”, “P629")

)

During predicate transformation:

1

Simple predicates (joins, search arguments, and in lists) that are an exact
match in each or clause are extracted. In the sample query, this clause
matches exactly in each block, so it is extracted:

t.pub_id = p.pub_id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query uses
between 15 in both query blocks (though the end ranges are different). The
equivalent clauseis extracted by step 1:

price >=15

Search arguments on the same table are extracted; all termsthat reference
the sametable aretreated asasingle predicate during expansion. Both type
and price are columnsin the titles table, so the extracted clauses are:

(type = “travel” and price >=15 and price <= 30)
or
(type = “business” and price >= 15 and price <= 50)

in lists and or clauses are extracted. If there are multiplein listsfor atable
withinablock, only thefirst isextracted. The extracted listsfor the sample
query are:

p.pub_id in (“P220”, “P583”, “P780")
or
p.pub_id in (“P651", “PO66", “P629")

Since these steps can overlap and extract the same clause, duplicates are
eliminated.

Each generated term is examined to determine whether it can be used as
an optimized search argument or ajoin clause. Only those terms that are
useful in query optimization are retained.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

The additional clauses are added to the query clauses specified by the user.

Predicate transformation pulls clauses linked with AND from blocks of clauses
linked with OR, such as those shown above. It extracts only clauses that occur
in all parenthesized blocks. If the example above had aclause in one of the
blockslinked with OR that did not appear in the other clause, that clause would
not be extracted.

Handling search arguments and useful indexes

It isimportant to distinguish between where and having clause predicates that
can be used to optimize the query, and those that are used later during query
processing to filter the returned rows.

You can use search arguments to determine the access path to the data rows
when a column in the where clause matches an index key. The index can be
used to locate and retrieve the matching data rows. Once the row has been
located in the data cache or has been read into the data cache from disk, any
remaining clauses are applied.

For example, if the authors table has an index on au_Iname and another on city,
either index can be used to locate the matching rows for this query:

select au_lname, city, state
from authors

where city = “Washington”
and au_lname = “Catmull”

The query optimizer uses statistics (including histograms), the number of rows
inthetable, theindex heights, and the cluster ratiosfor theindex and data pages
to determinewhichindex providesthe cheapest access. Theindex that provides
the cheapest access to the data pages is chosen and used to execute the query,
and the other clauseis applied to the data rows once they have been accessed.

Nonequality operators

The query optimizer checks whether the index contains all columns necessary
to satisfy the query without accessing the data row, and uses a covered index
scan if thisisthe case. However, if theindex does not cover the query, thetable
is accessed through arow 1D lookup of the data pages during the index scan.

Query Processing and Abstract Plans 11

Query optimizer

Examples of search argument optimization

12

Shown below are examples of clauses that can be fully optimized. If there are
statistics on these columns, they can be used to help estimate the number of
rows the query will return. If there are indexes on the columns, theindexes can
be used to access the data.

au_lname = “Bennett”

price >= $12.00

advance > $10000 and advance < $20000
au_lname like "Ben%" and price > $12.00

A row filtering estimate on the following single attribute predicates is made if
the histogram is available on the respective attributes advance and au_Iname.
However, these predicates are not optimized as limiting SARGs unless a
function index isbuilt on them, since SARGs cannot have operationsinvolving
the column name.

advance * 2 = 5000 /*expression on column side
not permitted */
substring(au lname,1,3) = "Ben" /* function on

column name */

However, the two clauses above can be optimized as SARGs if they are
rewritten in this form:

advance = 5000/2
au_lname like "Ben%”

Consider this query, with the only index on au_lname:

select au_ lname, au_ fname, phone
from authors

where au lname = “Gerland”

and city = “San Francisco”

SARGs provide a performance advantage since they can be evaluated deep in
the data manager directly on the data or index page, whereas other, more
complex, expression predicates need extra processing for their evaluation. A
limiting SARG reduces the number of rows scanned on an index; afiltering
SARG does not reduce the number of rows scanned, but instead reduces the
number of rows selected during the scan.

The clause on au_Iname qualifiesasalimiting SARG, since anindex existson
thiscolumn, which can usethispredicatefor positioning to limit theindex rows
scanned.

au_lname = “Gerland”

e Thereisanindex on au_lname.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

e Thereare no functions or other operations on the column name.
e Theoperator isavalid SARG operator.

The clause city = “San Francisco” matches all the criteriaabove except thefirst;
thereisnoindex on the city column, so this clauseis considered to be afiltering
SARG. Inthiscase, theindex on au_Iname isused for the query. All data pages
with a matching last name are brought into cache, and each matching row is
examined to seeif the city matches the search criteria.

Handling joins

The query optimizer deals with join predicates the same way it deals with
search arguments, in that it uses statistics, number of rowsin the table, index
heights, and the cluster ratios for the index and data pages to determine which
index and join method provides the cheapest access. In addition, the query
optimizer also uses join density estimates derived from join histograms that
give accurate estimates of qualifying joining rows and the rows to be scanned
in the outer and inner tables. The query optimizer also must decide on the
optimal join ordering that will yield the most efficient query plan. The next
sections describe the key techniques used in processing joins.

join density and join histograms

The query optimizer uses a cost model for joins that use table-normalized
histograms of the joining attributes. Thistechnique gives an exact value for the
skewed values (that is, frequency count) and uses the range cell densitiesfrom
each histogram to estimate the cell counts of corresponding range cells.

Thejoin density is dynamically computed from the “join histogram,” which
considersthejoining of histogramsfrom both sides of the join operator. Thefirst
histogram join occurs typically between two base tables when both attributes
have histograms. Every histogram join creates a new histogram on the
corresponding attribute of the parent join’s projection.

The outcome of the join histogram technique is accurate join selectivity
estimates, even if datadistributions of thejoining columns are skewed, resulting
in superior join orders and performance.

Query Processing and Abstract Plans 13

Query optimizer

joins with mixed datatypes

A basic requirement is the ability to build keys for index lookups whenever
possible, without regard to mixed datatypes of any of the join predicates versus
the index key. Consider the following query:

create table Tl (cl int, c2 int)
create table T2 (¢l int, c2 float)
create index 11 on T1(c2)

create index 11 on T2 (c2)

select * from Tl, T2 where T1l.c2=T2.c2

Assumethat T1.c2 isof typeint and hasanindex oniit, and that T2.c2 is of type
float with an index.

Aslong as datatypes are implicitly convertible, index scans can be gainfully
used to process the join. In other words, the query optimizer will use the
column value from the outer table to position the index scan on the inner table,
even when the lookup value from the outer table has a different datatype than
the respective index attribute of the inner table.

joins with expressions and or predicates

join ordering

14

See “Predi cate transformation and factoring to provide additional
optimization paths’” on page 9 for description of how the query optimizer
handles joins with expressions and or predicates

One of the key tasks of the query optimizer isto generate a query plan for join
queries so that the order of the relations in the joins processed during query
execution is optimal. Thisinvolves elaborate plan search strategies that can
consume significant time and memory. The query optimizer uses several
effective techniquesto obtain the optimal join ordering. The key techniques are:

» Useof a“greedy strategy” to obtain aninitial good ordering that can be
used as an upper boundary to prune out other, subsequent join orderings.
The greedy strategy employs join row estimates and the nested-loop-join
method to arrive at the initial ordering.

* Anexhaustiveordering strategy followsthe greedy strategy. A potentially
better join ordering replaces the join ordering obtained in the greedy
strategy. This ordering may employ any join method associated with the
current active optimization goal.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Use of extensive cost-based and rule-based pruning techniques eliminates
undesirable join orders from consideration. The key aspect of the pruning
techniqueisthat it always compares partial join orders (the prefix of a
potential join ordering) against the best complete join ordering to decide
whether to proceed with the given prefix. This significantly improvesthe
time required determine an optimal join order.

The query optimizer can recognize and process star or snowflake schema
joins and processtheir join ordering inthe most efficient way. A typical star
schemajoin involves alarge fact table that has equijoin predicates that join
it with several dimension tables. The dimension tables have no join
predicates connecting each other; that is, there are no joins between the
dimension tables themselves, but there are join predicates between the
dimension tables and the fact table. The query optimizer employs special
join ordering techniques during which the large fact table is pushed to the
end of thejoin order and the dimension tables are pulled up front, yielding
highly efficient query plans. The query optimizer will not, however, use
this technique if the star schema joins contain subqueries, outer joins or or
predicates.

Optimization goals

Optimization goal sare aconvenient way to match query demandswith the best
optimization techniques, thus ensuring optimal use of the optimizer’stime and
resources. The query optimizer allows you to configure two types of
optimization goal's, which you can specify at three levels: server, session, and
query.

Set the optimization goal at the desired level. The server-level optimization
goal isoverridden at the session level, which is overridden at the query level.

These optimization goalsallow you to choose an optimization strategy that best
fits your query environment:

allrows_oltp —this goal attempts to reduce any query processing behavior
changes when upgrading from pre-15.0 rel eases.

allrows_mix — the default goal, and the most useful goal in a mixed-query
environment. This goal balances the needs of OLTP and DSS query
environments.

allrows_dss — the most useful goal for operational DSS queries of
medium-to-high compl exity.

Query Processing and Abstract Plans 15

Optimization goals

Exceptions

At the server level, use sp_configure. For example:

sp_configure optimization goal", 0, “allrows mix”
At the session level, use set plan optgoal. For example:

set plan optgoal allrows dss
At the query level, use the select or other DML command. For example:

select * from A order by A.a plan
“(use optgoal allrows_dss)”

In general, you can set query-level optimization goals using select, update, and
delete statements. However, you cannot set query-level optimization goalsin
pureinsert statements, although you can set optimization goalsininsert...select
statements.

Limiting the time spent optimizing a query

16

Long-running and complex queries can be time-consuming and costly to
optimize. The timeout mechanism helps to limit that time while supplying a
satisfactory query plan. The query optimizer provides a mechanism by which
the optimizer can limit the time taken by long-running and complex queries;
timing out allows the query processor to stop optimizing when it is reasonable
to do so.

However, changing timeout values should be alast resort, as there are usualy
better alternatives to try. For example, make sure statistics exist (by using the
show_missing_stats set command) and are up to date, since poor or missing
statistics can result is overestimating costs which could result in excessive
optimization time as the optimizer tries to find a better plan, even though the
current best plan may actually execute quickly. Another solution for reducing
compilation time, rather than reducing the timeout, isto turn on the statement
cache so that queries that are re-executed frequently are only optimized once
and cached. Another solution for complex queries could beto use allrows_oltp,
which reducesthe options considered during optimization. Yet another solution
for reducing compilation time rather than reducing timeout is to use abstract
plans. This effectively skips the optimizer and can be used if current
performance is acceptable and it is anticipated that the data distribution
changes are minimal or will not affect the query plans.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

The optimizer triggers timeout during optimization when both these
circumstances are met:

e Atleast one complete plan has been retained as the best plan.
e The user-configured timeout percentage limit has been exceeded.

You can limit the amount of time Adaptive Server spends optimizing a query
at every level, setting the optimization timeout limit parameter to aval ue between
0 and 1000. The optimization timeout limit parameter represents the percentage
of estimated query execution timethat Adaptive Server must spend to optimize
the query. For example, specifying avalue of 10tells Adaptive Server to spend
10% of the estimated query execution time in optimizing the query. Similarly,
avalue of 1000 tells Adaptive Server to spend 1000% of the estimated query
execution time, or 10 times the estimated query execution time, in optimizing
the query.

A separate configuration parameter, sproc optimize timeout limit, is used for
stored procedures. It has a default value of 40 and a maximum value of 4000.
Since astored procedureisusually cached, it isworthwhile to spend moretime
looking for better plans for complex queries, since a procedure is optimized
once and then cached for reuse.

A largetimeout value may be useful for optimization of stored procedures with
complex queries. It is expected that the longer optimization time of the stored
procedures will yield better plans; the longer optimization time can be
amortized over several executions of the stored procedure.

A small timeout value may be used when a faster compilation time is wanted
from complex ad-hoc queries that normally take along time to compile.
However, for most queries, the default timeout value of 10 should suffice.

Use sp_configure to set the optimization timeout limit configuration parameter
at the server level. For example, to limit optimization time to 10% of total
guery processing time, enter:

sp_configure “optimization timeout limit”, 10
Use set to set optimization time at the session level:

set plan opttimeoutlimit <n>
Where nisany integer between 0 and 1000.
Use select to limit optimization time at the query level:

select * from <table> plan “(use opttimeoutlimit <n>)”

Query Processing and Abstract Plans 17

Parallelism

Parallelism

Wherenisany integer between 0 and 1000. 0 isused to indicate that no timeout
should be used, which could take hours to optimize queries with 20 or more
tablesif no low cost plan is found.

Table 1-3: Optimization timeout limit

Summary information

Default value 10

Range of values 0-1000

Status Dynamic

Display level Comprehensive
Required role System Administrator

Adaptive Server supports horizontal and vertical parallelism for query
execution. Vertical parallelism is the ability to run multiple operators at the
same time by employing different system resources such as CPUs, disks, and
so on. Horizontal parallelism is the ability to run multiple instances of an
operator on the specified portion of the data.

See Chapter 4, “Parallel Query Processing,” for amore detailed discussion of
parallel query optimization in Adaptive Server.

Optimization issues

18

Although the query optimizer can optimize most queries efficiently, there are
some optimization issues:

» If statistics have not been updated recently, the actual data distribution
may not match the values used to optimize queries.

e Therowsreferenced by a specified transaction may not fit the pattern
reflected by the index statistics.

» Anindex may access alarge portion of the table.

» where clauses (SARGS) may be written in aform that cannot be
optimized.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Create search
arguments

No appropriate index exists for acritical query.

A stored procedure was compiled before significant changes to the
underlying tables were performed.

No statistics exists for the SARG or joining columns.

Use the set option show_missing_stats on command before you execute a
problem query to determine if there are any statistics that the optimizer could
have used that were not available. Use update statistics, if possible, to eliminate
the missing statistics warnings.

These situations highlight the need to follow some best practicesthat will allow
the query optimizer to perform at its full potential. Some of the practices that
you may choose to employ are discussed below.

When you write search arguments for your queries:

Avoid functions, arithmetic operations, and other expressions on the
column side of search clauses. When possible, move functions and other
operations to the expression side of the clause.

Use all the search arguments you can to give the query processor as much
as possible to work with.

If aquery has more than 400 predicates for atable, place the most
potentially useful clauses near the beginning of the query. (All of the
search conditions are used to qualify the rows.)

Queriesusing > (greater than) may perform better if you can rewrite them
to use >= (greater than or equal to). For example, this query, with an index
onint_col, usesthe index to find the first value where int_col equals 3, and
then scans forward to find the first valuethat is greater than 3. If there are
many rowswhereint_col equals 3, the server must scan many pagesto find
the first row whereint_col is greater than 3;

select * from tablel where int col > 3
It is more efficient to write the query this way:
select * from tablel where int col >= 4

However, this optimization is more difficult with character strings and
floating-point data.

Check the showplan output to see which keys and indexes are used.

Query Processing and Abstract Plans 19

Optimization issues

Use SQL-derived
tables

20

« If anindex isnot being used when you expect it to be, use output from the
set commands in Table 1-4 and Table 1-6 to see whether the query
processor is considering the index.The set commands and options shown
in these tables save diagnostic information to afile.

Table 1-4: set commands

set command Arguments
set show_sqltext on | off

set showplan on | off

set statistics io on | off

set statistics time on | off

set statistics plancost on | off
Table 1-5: set options

set option Arguments

set option show

normal | brief | long | on | off

set option show_lop

normal | brief | long | on | off

set option show_parallel

normal | brief | long | on | off

set option show_search_engine

normal | brief | long | on | off

set option show_counters

normal | brief | long | on | off

set option show_managers

normal | brief | long | on | off

set option show_histograms

normal | brief | long | on | off

set option show_abstract_plan

normal | brief | long | on | off

set option show_best_plan

normal | brief | long | on | off

set option show_code_gen

normal | brief | long | on | off

set option show_pio_costing

normal | brief | long | on | off

set option show_lio_costing

normal | brief | long | on | off

set option show_log_props

normal | brief | long | on | off

set option show_elimination

normal | brief | long | on | off

Queries expressed as asingle SQL statement make better use of the query
processor than queries expressed in two or more SQL statements. SQL-derived
tables enable you to express, in asingle step, what might otherwise require
several SQL statements and temporary tables, especially where intermediate

aggregate results must be stored. For example:

select dt_1.* from

(select sum(total sales)
from titles west group by total sales)
dt_1(sales_sum),

(select sum(total sales)

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

from titles east group by total sales)
dt 2 (sales_sum)
where dt_1l.sales_sum = dt_2.sales_sum

Here, aggregate results are obtained from the SQL -derived tablesdt_1 and
dt_2, and ajoin is computed between the two SQL -derived tables. Everything
isaccomplished in asingle SQL statement.

For more information on SQL-derived tables, see the Transact-SQL User's

Guide.
Tune according to To understand query and system behavior, know the sizes of your tables and
object sizes indexes. At several stages of tuning work, you need size data to:

Understand statistics i/o reports for a specific query plan.

Understand the query processor's choice of query plan. The Adaptive
Server cost-based query processor estimates the physical and logical 1/0
reguired for each possible access method and sel ects the cheapest method.

Determine object placement, based on the sizes of database objectsand on
the expected /O patterns on the objects.

To improve performance, distribute database objects across physical
devices, so that reads and writesto disk are evenly distributed.

Object placement is described in Chapter 5, “ Controlling Physical Data
Placement,” in Performance and Tuning: Basics.

Understand changes in performance. If objects grow, their performance
characteristics can change. For example, consider atablethat is heavily
used and isusually 100% cached. If the table growstoo large for its cache,
gueries that access the table can suffer poor performance. Thisis
particularly true of joins that require multiple scans.

Do capacity planning. Whether you are designing a new system or
planning for the growth of an existing system, you must know the space
reguirements to plan for physical disks and memory needs.

Understand output from Adaptive Server Monitor Server and from
sp_sysmon reports on physical 1/0.

See the System Administration Guide for more information on sizing.

Query Processing and Abstract Plans 21

Query execution engine

Query execution engine

Query plans

22

In Adaptive Server, al query plans are submitted to the procedural execution
engine. The procedural execution engine drives execution of the query plan by:

» Directly executing simple SQL statements such as set, while, and goto.

» Cadlling out to the utility modules to execute create table, create index, and
other utility commands.

e Setting up the context for and driving the execution of stored procedures
and triggers.

» Setting up the execution context and calling the query execution engineto
execute query plansfor select, insert, delete, and update statements.

» Setting up the cursor execution context for cursor open, fetch and close
statements and calling the query execution engine to execute these
Statements.

» Doing transaction processing and post execution cleanup.

To support the demands of today’s applications, a new generation of query
execution techniques is required. To meet that demand, the query execution
engine has been completely rewritten. With anew query execution engine and
query optimizer in place, the procedural execution engine in Adaptive Server
15.0 passes al query plans generated by the new query optimizer to the query
execution engine.

The query execution engine executes query plans. All query plans chosen by
the optimizer are compiled into query plans. However, SQL statementsthat are
not optimized, such asset or create, are compiled into query planslikethosein
versionsof Adaptive Server earlier than 15.0, and are not executed by the query
execution engine. Earlier query plans are either executed by the procedural
execution engine or by utility modules called by the procedural engine.
Adaptive Server version 15.0 has two distinct kinds of query plans and thisis
clearly seen in the showplan output (see Chapter 2, “Using showplan.”)

A query planisbuilt as an upside down tree of operators: The top operator can
have one or more child operators, which in turn can have one or more child
operators, and so on, thus building a bottom-up tree of operators. The exact
shape of the tree and the operatorsin it are chosen by the optimizer.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

An example of aquery plan for the following query is shown in Figure 1-2
below:

select o.id from sysobjects o, syscolumns c
where o0.id = c.id and o.id < 2

Figure 1-2: Query plan

Emit

NestedLoopJoin

IndexScan IndexScan
sysobjects(0) syscolumns(o)

The query plan for this query consists of four operators. The top operator isan
Emit (also called Root) operator that dispatches the results of query execution
either by sending the rowsto the client or by assigning valuesto local variables.

The only child operator of the Emit is a NestedLoopJoin (NLJoin) that uses the
nested-loop-join algorithm to join the rows coming fromitstwo child operators,
(1) the scan of sysobjects and (2) the scan of syscolumns.

Since the optimizer optimizes al select, insert, delete, and update statements,
these are always compiled into query plans and executed by the query engine.

Some SQL statements are compiled into hybrid query plans. Such plans have
multiple steps, some of which are executed by the utility modules and afinal
step that is aquery plan. An exampleis the select into statement; select into is
compiled into atwo-step query plan. Thefirst stepisacreate table stepto create
the target table of the statement. The second step is a query plan to insert the
rowsinto the target table. To execute this query plan, the procedural execution
engine calls the create table utility to execute the first step to create the table.
Then the procedural engine calls the query execution engine to execute the
query planto select and insert therowsinto thetarget table. Thetwo other SQL
statements that generate hybrid query plans are alter table (but only when data
copying isrequired) and reorg rebuild.

Query Processing and Abstract Plans 23

Query execution engine

A query planisalso generated and executed to support bep. The support for bep
in Adaptive Server has always beenin the bep utility. In version 15.0 and | ater,
the bep utility generates a query plan and calls the query execution engine to
execute the plan.

More examples of query plans can be found in Chapter 2, “Using showplan.”

Query plan operators

The query plans are built of operators. Each operator is a self-contained
software object that implements one of the basic physical operations that the
optimizer usesto build query plans. Each operator has five methods that can be
called by its parent operator. These five methods correspond to the five phases
of query execution and are called Acquire, Open, Next, Close, and Release.
Because the query plan operators all provide the same methods (that is, the
same APIs), they can beinterchanged like building blocksin aquery plan. The
NLJoin operator in Figure 1-1 on page 2 can be replaced by a MergeJoin
operator or a HashJoin operator without impacting any of the other three
operatorsin the query plan.

The query plan operators that can be chosen by the optimizer to build query
plans arelisted in Table 1-6:

Table 1-6: Query plan operators

Operator Description

BulkOp Executes the part of bcp processing that is done in the query engine. Only found in
query plansthat are created by the bep utility, not those created by the optimizer.

CacheScanOp Reads rows from an in-memory table.

DelTextOp Deletes text page chains as part of the alter table drop column processing.

DeleteOp Deletes rows from alocal table.

Deletes rows from a proxy table when the entire SQL statement cannot be shipped to
the remote server. See a'so RemoteScanOp.

EmitOp (RootOp)

Routes query execution result rows. Can send resultsto the client or assign result values
tolocal variablesor fetch into variables. An EmitOp isalwaysthetop operator in aquery
plan.

EmitExchangeOp Routes result rows from a subplan that is executed in parallel to the ExchangeOp in the
parent plan fragment. EmitExchangeOp always appears directly under an ExchangeOp.
See Chapter 4, “Parallel Query Processing.”

GroupSortedOp Performs vector aggregation (group by) when the input rows are already sorted on the

(Aggregation) group-by columns. See also HashVectorAggOp.

GroupSorted (Distinct)

24

Eliminates duplicaterows. Requirestheinput rowsto be sorted on all columns. Seeaso
HashDistinctOp and SortOp (Distinct).

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

Operator Description

HashVectorAggOp Performsvector aggregation (group by). UsesaHash algorithm to group theinput rows,
S0 no requirements on ordering of the input rows. See also GroupSortedOp
(Aggregation).

HashDistinctOp Eliminates duplicate rows using a hashing algorithm to find duplicate rows. See also
GroupSortedOp (Distinct) and SortOp (Distinct).

HashJoinOp Performs ajoin of two input row streams using the HashJoin algorithm.

HashUnionOp Performs aunion operation of two or more input row streams using ahashing algorithm
to find and eliminate duplicate rows. See also MergeUnionOp and UnionAllOp.

InsScrollOp Implements extra processing needed to support insensitive scrollable cursors. See also
SemilnsScrollOp.

InsertOp Insertsrowsto alocal table.

Inserts rows to a proxy table when the entire SQL statement cannot be shipped to the
remote server. See also RemoteScanOp.

MergeJoinOp Performs a join of two streams of rows that are sorted on the joining columns using the
merge join algorithm.

MergeUnionOp Performs aunion or union all operation on two or more sorted input streams. Guarantees
that the output stream retains the ordering of the input streams. See al so HashUnionOp
and UnionAllOp.

NestedLoopJoinOp Performs ajoin of two input streams using the NestedLoopJoin agorithm.

NaryNestedLoopJoinOp | Performs ajoin of three or more input streams using an enhanced NestedLoopJoin
algorithm. This operator replaces aleft-deep tree of NestedLoopJoin operators and can
lead to significant performance improvements when rows of some of theinput streams
can be skipped.

OrScanOp Insertsthein or or values into an in-memory table, sorts the values, and removes the
duplicates.Then returnsthe values, one at atime. Used only for SQL statementswithin
clauses or multiple or clauses on the same column.

PtnScanOp Reads rows from alocal table (partitioned or not) using either atable scan or an index
scan to access the rows.

RIDJoinOp Receives one or more row identifiers (RIDs) from itsleft child operator and callsonits

right child operator (PtnScanOp) to find the corresponding rows. Used only on SQL
statements with or clauses on different columns of the same table.

RIFilterOp (Direct)

Drivesthe execution of asubplan to enforce referential integrity constraintsthat can be
checked on arow-by-row basis.

Appearsonly ininsert, delete, or update queries on tables with referential integrity
constraints.

RIFilterOp (Deferred)

Drivesthe execution of a subplan to enforce referential integrity constraintsthat can be
checked only after all rows that will be affected by the query have been processed.

Query Processing and Abstract Plans 25

Query execution engine

Operator

Description

RemoteScanOp

Accesses proxy tables. The RemoteScanOp can:

« Readsrowsfrom asingle proxy table for further processing in aquery plan on the
local host.

* Passes complete SQL statements to a remote host for execution: insert, delete,
update, and select statements. In this case, the query plan will consist of an EmitOp
with aRemoteScanOp asits only child operator.

« Passesanarbitrarily complex query plan fragment to aremote host for execution and
read in the result rows (function shipping).

RestrictOp

Evaluates expressions.

SQFilterOp

Drives the execution of a subplan to execute one or more subqueries.

ScalarAggOp

Performs scalar aggregation, such as aggregates without group by.

SemilnsScrollOp

Performs extra processing to support semiinsensitive scrollable cursors. See aso
InsScrollOp.

SequencerOp

Enforces sequentia execution of different subplansin the query plan.

SortOp

Sortsits input rows based upon specified keys.

SortOp (Distinct)

Sortsits input and removes duplicate rows. See aso HashDisitnctOp and
GroupSortedOp (Distinct).

StoreOp Creates and coordinates thefilling of aworktable, and creates a clustered index on the
worktableif required. StoreOp can haveonly InsertOp asachild; InsertOp popul atesthe
worktable.

UnionAllOp Performsaunion all operation ontwo or moreinput streams. See also HashUnionOp and
MergeUnionOp.

UpdateOp Changesthevalue of columnsinrowsof alocal table or of aproxy tablewhentheentire
update statement cannot be sent to the remote server. See a'so RemoteScanOp.

ExchangeOp Enables and coordinates parallel execution of query plans. The ExchangeOp can be

inserted between almost any two query plan operatorsin aquery planto dividethe plan
into subplans that can be executed in parallel. See Chapter 4, “Parallel Query
Processing.”

Query plan execution

26

Execution of a query plan involves five phases:

1 Acquire—acquires resources needed for execution, such as memory
buffers and worktables.

2 Open —preparesto return result rows.
Next — generates the next result row.

4 Close - cleans up; for example, notifies the access layer that scanning is
complete, or truncate worktabl es.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing

5 Release — releases resources obtained during the acquire phase, such as

memory buffers and worktabl es.

Each operator has amethod with the same name as the phase, which isinvoked
for each of these phases.

The query planin Figure 1-2 on page 23 demonstrates query plan execution:

Acquire phase

The Acquire method of the Emit operator isinvoked. The Emit operator
calls Acquire on its child, the NLJoin operator, which in turn calls Acquire
onitsleft child operator (the index scan of sysobjects) and then onitsright
child operator (the index scan of syscolumns).

Open phase

The Open method of the Emit operator isinvoked. The Emit operator calls
Open on the NLJoin operator, which calls Open only on itsleft child
operator.

Next phase

The Next method of the Emit operator isinvoked. Emit calls Next on the
NLJoin operator, which calls Next on its |eft child, the index scan of
sysobjects. Theindex scan operator readsthefirst row from sysobjectsand
returns it to the NLJoin operator. The NLJoin operator then calls the Open
method of itsright child operator, the index scan of syscolumns. Then the
NLJoin operator calls the Next method of the index scan of syscolumns to
get arow that matchesthe joining key of the row from sysobjects. When a
matching row has been found, it is returned to the Emit operator, which
sendsit back to the client. Repeated invocations of the Next method of the
Emit operator generate more result rows.

Close phase

After al rows have been returned, the Close method of the Emit operator
isinvoked, which in turn calls Close of the NLJoin operator, which in turn
calls Close on both of its child operators.

Release phase

The Release method of the Emit operator isinvoked and the calls to the
Release method of the other operatorsis propagated down the query plan.

After successfully compl eting the Rel ease phase of execution, the query engine
returns control to the procedural execution engine for final statement
processing.

Query Processing and Abstract Plans 27

Query execution engine

28 Adaptive Server Enterprise

CHAPTER 2 Using showplan

This chapter describesthe messages printed by the showplan utility, which
displays the query plan in atext-based format for each SQL statement in

abatch or stored procedure.
Topic Page
Displaying aquery plan 29
Statement-level output 30
Query plan shape 33
Union operators 74
Instead-of trigger operators 92

Displaying a query plan
To see query plans, use:
set showplan on
To stop displaying query plans, use:
set showplan off
You can use showplan in conjunction with other set commands.

To display query plans for a stored procedure, but not execute them, use
the set fmtonly command.

See Chapter 4, “Query Tuning Tools’ in the Performance and Tuning:
Optimizer and Abstract Plans for information on how options interact.

Note Do not use set noexec with stored procedures—compilation and
execution does not occur and you do not receive the necessary output.

Query Processing and Abstract Plans 29

Statement-level output

Query plans in Adaptive Server Enterprise 15.0
In Adaptive Server, there are two kinds of query plans:

* Legacy query plans from versions earlier than 15.0 are still used for SQL
statements that are not executed by the query engine, such asset or create
table, and so on.

e Inversion 15.0 and later, the query plans chosen by the optimizer are
executed by the query execution engine.

The legacy query plans are unchanged in Adaptive Server 15.0, and their
showplan output is also unchanged.

The query plansthat are executed by the query engine are different from those
executed by the query engine in versions of Adaptive Server earlier than 15.0.
The corresponding showplan output has changed significantly aswell. Some of
the new features of the query plans that showplan must display include:

» Plan elements— query plans can be composed from over thirty different
operators.

» Plan shape — query plans are upside down trees of operators. In general,
more operatorsin a query plan results in more combinations of possible
tree shapes.15.0 query plans can be more complex than those found in
earlier Adaptive Server Enterprise versions. Nested indentation is
provided to assist in visualizing the tree shape of these query plans.

e Subplansthat are executed in parallel.
Therest of this chapter describes the showplan output for query plans.

Statement-level output

The first section of showplan output for each query plan presents some
statement-level information. There is always a message giving the statement
and line number in the batch or stored procedure of the query for which the
query plan was generated:

QUERY PLAN FOR STATEMENT N (at line N).

This message may be followed by a series of messages that apply to the
statement’s query plan as awhole. A message about abstract plan usage
appears next if the query plan was generated using an abstract plan. The
message indicates how the abstract plan was forced.

30 Adaptive Server Enterprise

CHAPTER 2 Using showplan

e |f an explicit abstract plan was given by a plan clause in the SQL
statement, the messageis.

Optimized using the Abstract Plan in the PLAN clause.

e If anabstract plan has been internally generated (that is, for alter table and
reorg commands that are executed in parallel) the message is:

Optimized using the forced options (internally
generated Abstract Plan).

« |If an abstract plan has been retrieved from sysqueryplans because
automatic abstract plan usage is enabled, the message is:

Optimized using an Abstract Plan (ID : N).

e Ifthequery planisaparalléel query plan, the following message showsthe
number of processes (coordinator plusworker) that are required to execute
the query plan.

Executed in parallel by coordinating process and N
worker processes.
e |If the query plan was optimized using simulated statistics, this message
appears next:

Optimized using simulated statistics.

e Adaptive Server uses a scan descriptor for each database object that is
accessed during query execution. Each connection (or each worker
process for parallel query plans) has 28 scan descriptors by default. If the
query plan requires accessto morethan 28 database objects, auxiliary scan
descriptors are allocated from a global pool. If the query plan uses
auxiliary scan descriptors, this message is printed, showing the total
number required:

Auxiliary scan descriptors required: N

* Thismessage shows the total humber of operators appearing in the query
plan:

N operator(s) under root

* The next message shows the type of query for the query plan. For query
plans, the query type is select, insert, delete, or update:

The type of query is SELECT.

Query Processing and Abstract Plans 31

Statement-level output

1>

1>
2>
3>
4>
5>
6>

« Afinal statement-level messageis printed at the end of showplan output if
Adaptive Server has been configured to enable resource limits. The
message displays the optimizer’s total estimated cost of logical and
physical 1/O:

Total estimated I/0 cost for statement N (at line M) :
X.

The following query, with showplan output, shows some of these messages:

use pubs2
set showplan on

select stores.stor name, sales.ord num

from stores, sales, salesdetail

where salesdetail.stor id = sales.stor id

and stores.stor_ id = sales.stor_id

plan " (m _join (i _scan salesdetailind salesdetail)

(m join (i scan salesind sales) (sort (t_scan stores))))"

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

6 operator (s) under root

The type of query is SELECT.

ROOT:EMIT Operator

32

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

| SCAN Operator

| FROM TABLE

| salesdetail

| Index : salesdetailind

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table will not be read.
| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

|MERGE JOIN Operator (Join Type: Inner Join)

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Using Worktable2 for internal storage.
Key Count: 1
Key Ordering: ASC

| SCAN Operator
| FROM TABLE

| sales

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

SORT Operator
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE

| stores

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

After the statement level output, the query plan is displayed. The showplan
output of the query plan consists of two components:

e Thenamesof the operators (some provide additional information) to show
which operations are being executed in the query plan.

e Vertical bars (the“|” symbol) with indentation to show the shape of the
query plan operator tree.

Query plan shape

A query planisan upside down tree of operators. The position of each operator
in the tree determines its order of execution. Execution starts down the | eft-
most branch of the tree and proceeds to the right. To illustrate execution, this
section steps through the execution of the query plan for the example, above.
Figure 2-1 shows agraphical representation of the query plan.

Query Processing and Abstract Plans 33

Query plan shape

34

Figure 2-1: Query plan

EmitOP
MergeJoinOp(1)
Inner join
ScanOp MergedJoinOp(2)
salesdetailind Inner join
ScanOp SortOp
sales
ScanOp
stores

To generate a result row, the EmitOp calls for arow from its child, the
MergeJoinOp(1). MergeJoinOp(1) callsfor arow fromitsleft child, the ScanOp
for salesdetailind. When it receives arow from itsleft child, MergeJoinOp(1)
callsfor arow from itsright child, MergeJoinOp(2). MergeJoinOp(2) callsfor
arow from itsleft child, the ScanOp for sales. When it receives arow from its
left child, MergeJoinOp(2) calls for arow from itsright child, the SortOp. The
SortOp isadata blocking operator. That is, it needs all of itsinput rows before
it can sort them, so the SortOp keeps calling for rowsfromitschild, the ScanOp
for stores, until all rows have been returned. Then the SortOp sortstherowsand
passes the first one up to the MergeJoinOp(2). The MergeJoinOp(2) keeps
calling for rows from either the left or right child operators until it getstwo
rows that match on the joining keys. The matching row is then passed up to
MergeJoinOp(1). MergeJoinOp(1) also calls for rows from its child operators
until amatch isfound, which is then passed up to the EmitOp to be returned to
the client. In effect, the operators are processed using a left-deep postfix
recursive strategy.

Figure 2-2 shows a graphical representation of an alternate query plan for the
sameexample query. Thisquery plan containsall of the same operators, but the
shape of the tree is different.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Figure 2-2: Alternate query plan

EmitOP

MergeJoinOp(1)
I}ner join\
MergeJoinOp(2) ScanOp
Inner join salesdetailind
ScanOp SortOp
sales /
ScanOp

stores

The showplan output corresponding to the query plan in Figure 2-2 is.

QUERY PLAN FOR STATEMENT 1 (at line 1).
6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

|MERGE JOIN Operator (Join Type: Inner Join)
| Using Worktable2 for internal storage.

| Key Count: 1

| Key Ordering: ASC

|

|

|

| SCAN Operator
| FROM TABLE

Query Processing and Abstract Plans 35

Query plan shape

36

| sales

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

SORT Operator
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE

| stores

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

| SCAN Operator

| FROM TABLE

| salesdetail

| Index : salesdetailind

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table will not be read.
| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

The showplan output conveys the shape of the query plan by using indentation
andthe“|” symbol to indicate which operators are under which and which ones
are on the same or different branches of the tree. There are two rulesto
interpreting the tree shape:

e Thepipe“|" symbolsform avertical linethat starts at the operator’s name
and continue down past al of the operators that are under it on the same
branch.

e Child operators are indented to the left for each level of nesting.

Using theserules, the shape of the query plan in Figure 2-2 can bederived from
the previous showplan output with the following steps:

1 Theroot or emit operator is at the top of the query plan tree.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

2 Themerge join operator (MergeJoinOp(1)) isthe left child of the root. The
vertical line that starts at MergeJoinOp(1) travels down the length of the
entire output, so al of the other operators are below MergeJoinOp(1) and
on the same branch.

3 Theleft child operator of the MergeJoinOp(1) is another merge join
operator, (MergeJoinOp(2)).

4 Thevertical line that starts at MergeJoinOp(2) travels down past ascan, a
sort, and another scan operator before it ends. These operators are all
nested as a sub-branch under MergeJoinOp(2).

5 Thefirst scan under MergeJoinOp(2) isits |eft child, the scan of the sales
table.

6 The sort operator isthe right child of MergeJoinOp(2) and the scan of the
stores tableisthe only child of the sort.

7 Below theoutput for the scan of the stores table, several vertical linesend.
Thisindicates that a branch of the tree has ended.

8 The next output isfor the scan of the salesdetail table. It has the same
indentation as MergeJoinOp(2), indicating that it is on the same level. In
fact, thisscan isthe right child of MergeJoinOp(1).

Note Most operators are either unary or binary. That is, they have either a
single child operator or two child operators directly beneath. Operators that
have more than two child operators are called “nary”. Operators that have no
children are leaf operatorsin the tree and are termed “nullary.”

Another way to get a graphical representation of the query plan isto use the
command set statistics plancost on. See Adaptive Server Reference Manual:
Commands for more information. This command is used to compare the
estimated and actual costsin aquery plan. It printsits output asasemigraphical
tree representing the query plan tree. It isavery useful tool for diagnosing
query performance problems.

Query plan operators

The query plan operators, and a description of each, arelisted in Table 1-6 on
page 24. This section contains additional messages that give more detailed
information about each operator.

Query Processing and Abstract Plans 37

Query plan shape

emit operator

The emit operator appears at the top of every query plan. emit istheroot of the
query plan tree and always has exactly one child operator. The emit operator
routes the result rows of the query by sending them to the client (an application
or another Adaptive Server instance) or by assigning valuesfrom theresult row
to local variables or to fetch into variables.

scan operator

The scan operator reads rowsinto the query plan and makesthem availablefor
further processing by the other operatorsin the query plan. The scan operator
isaleaf operator; that is, it never has any child operators. The scan operator
can read rows from multiple sources, so the showplan message identifying it is
always followed by afrom message to identify what kind of scan is being
performed. The three from messages are: from cache, from or list, and from table.

from cache message

This message shows that a CacheScanOp is reading a single-row in-memory
table.

from or list
Anor list has as many as N rows of or/in values.

Thefirst message showsthat an OrScanOp isreading rowsfrom an in-memory
table that contain values from an in list or multiple or clauses on the same
column. The OrScanOp appears only in query plans that use the special or
strategy for in lists. The second message shows the maximum number of rows
(N) that the in-memory table can have. Since OrScanOp eliminates duplicate
values when filling the in-memory table, N may be less than the number of
values appearing in the SQL statement. As an example, the following query
generates a query plan with the special or strategy and an OrScanOp:

1> select s.id from sysobjects s where s.id in (1, 0, 1, 2, 3)
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

38 Adaptive Server Enterprise

CHAPTER 2

Using showplan

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

NESTED LOOP JOIN Operator (Join Type: Inner Join)

| SCAN Operator

FROM OR List
OR List has up to 5 rows of OR/IN values.

SCAN Operator

FROM TABLE
sysobjects
s
Using Clustered Index.
Index : csysobjects
Forward Scan.
Positioning by key.
Index contains all needed columns. Base
table will not be read.
Keys are:
id AsC
Using I/0 Size 2 Kbytes for index leaf pages.

With LRU Buffer Replacement Strategy for index leaf pages.

This example hasfive valuesin thein list, but only four are distinct, so the
OrScanOp puts only the four distinct valuesin itsin-memory table. In the
example query plan, the OrScanOp is the left child operator of the NLJoinOp
and a ScanOp istheright child of the NLJoinOp. When this plan executes, the
NLJoinOp calls the OrScanOp to return arow from itsin-memory table, then
the NLJoinOp calls on the ScanOp to find al matching rows (one at atime),
using the clustered index for lookup. This example query plan is much more
efficient than reading all of the rows of sysobjects and comparing the value of

sysobjects.id in each row to the five valuesin thein list.

Query Processing and Abstract Plans

39

Query plan shape

from table

40

from table shows that a PtnScanOp is reading a database table. A second
message givesthetable name, and, if thereisa correlation name, that is printed
on the next line. Under the from table message in the previous exampl e output,
sysobjects isthe table name and s isthe correlation name. The previous
exampl e also shows additional messages under the from table message. These
messages give more information about how the PtnScanOp is directing the
access layer of Adaptive Server to get the rows from the table being scanned.

The messages below indicate whether the scan is atable scan or an index scan:
» table scan —the rows are fetched by reading the pages of the table.

» using clustered index — a clustered index is used to fetch the rows of the
table.

e Index : indexname—anindex isused to fetch thetablerows. If thismessage
is not preceded by the “using clustered index” message, a nonclustered
index is used. indexname is the name of the index that will be used.

These messages indicates the direction of atable or index scan. The scan
direction depends on the ordering specified when the indexes were created and
the order specified for columnsin the order by clause or other useful orderings
that could be exploited by operators further up in the query plan (for example,
asorted ordering for a merge-join strategy).

Backward scans can be used when the order by clause contains the ascending
or descending qualifiers on index keys, in the exact opposite of those in the
create index clause.

Forward scan
Backward scan

The scan-direction messages are followed by positioning messages, which
describe how accessto atable or to the leaf level of an index takes place:

* DPositioning at start of table —atablescanthat startsat thefirst
row of the table and goes forward.

* DPositioning at end of table—atablescanthat startsat thelast row
of the table and goes backward.

* Positioning by key—theindex isused to position the scan at thefirst
qualifying row.

* DPositioning at index start/positioning at index end-—these
messages are similar to the corresponding messages for table scans, except
that an index is being scanned instead of atable.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

If the scan can be limited dueto the nature of the query, the following messages
describe how:

. Scanning only the last page of the table-— appearswhen the
scan uses an index and is searching for the maximum value for scalar
aggregation. If theindex is on the column whose maximum is sought, and
theindex values arein ascending order, the maximum value will be on the
last page.

. Scanning only up to the first qualifying row—appearswhen
the scan uses an index and is searching for the minimum value for scalar

aggregation.

Note If theindex key is sorted in descending order, the above messages for
minimum and maximum aggregates are reversed.

In some cases, the index being scanned contains all of the columns of thetable
that are needed in the query. In such a case, this message is printed:

Index contains all needed columns. Base table will

not be read.
The optimizer may choose an index scan over atable scan even though
there are no useful keys on the index columns, if the index contains all of
the columns needed in the query. The amount of /O required to read the
index can be significantly less than that required to read the base table.
Index scansthat do not require base table pagesto beread are call covered
index scans.

If an index scan is using keysto position the scan, the following message is
printed:

Keys are:
Key <ASD/DESC>

This message shows the names of the columns used as keys (each key on its
own output line) and showsthe index ordering on that key: ASC for ascending
and DESC for descending.

After the messages that describe the type of access being used by the scan
operator, messages about the 1/O sizes and buffer cache strategy are printed.

I/O size messages
The 1/0 messages are;

Using I/0 size N Kbtyes for data pages.

Query Processing and Abstract Plans 41

Query plan shape

Using I/0 size N Kbtyes for index leaf pages.

These messages report the 1/0 sizes used in the query. The possible sizes are

2K, 4K, 8K, and 16K.

If the table, index, or database used in the query uses a data cache with large
1/O pooals, the optimizer can choose large I/O. It can chooseto use one 1/O size
for reading index leaf pages, and a different size for data pages. The choice
depends on the pool size avail able in the cache, the number of pagesto beread,
the cache bindings for the objects, and the cluster ratio for the table or index

pages.

Either or both of these messages can appear in the showplan output for ascan
operator. For atable scan, only the first messageis printed; for a covered index
scan, only the second message is printed. For an index scan that requires base

table access, both messages are printed.

After each 1/O size message, a cache strategy message is printed:

With <LRU/MRU> Buffer Replacement Strategy for data

pages.

With <LRU/MRU> Buffer Replacement Strategy for index

leaf pages.

In an LRU Replacement Strategy, the most recently accessed pages are
positioned in the cache to be retained as long as possible. Inan MRU
Replacement Strategy, the most recently accessed pages are positioned in the

cache for gqquick replacement.

Sample I/O and cache messages are shown in the following query:

1> use pubs2
1> set showplan on

1> select au_ fname, au lname, au id from authors

2> where au lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator
| SCAN Operator

| FROM TABLE
| authors

42

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Index : aunmind
Forward Scan.
Positioning by key.
Keys are:
au_lname ASC
Using I/0 Size 2 Kbytes for index leaf pages.
With LRU Buffer Replacement Strategy for index leaf pages.
Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

The scan of the authors table uses the index aunmind, but must also read the
base table pagesto get al of the required columns from authors. In this
example, there are two 1/0O size messages, each followed by the corresponding
buffer replacement message.

There are two special kinds of table scan operators that have their own special
messages—the rid scan and the log scan.

rid scan

Therid scanisfound only in query plansthat use the second or strategy that the
optimizer can choose, the general or strategy. The general or strategy may be
used when multipleor clauses are present on different columns. An exampl e of
aquery for which the optimizer can choose a general or strategy and its
showplan output is:

1> use pubs2

1> set showplan on

1> select id from sysobjects where id = 4 or name = 'foo'
QUERY PLAN FOR STATEMENT 1 (at line 1).

6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

RID JOIN Operator
Using Worktable2 for internal storage.

HASH UNION Operator has 2 children.
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE

Query Processing and Abstract Plans 43

Query plan shape

44

| sysobjects

| Using Clustered Index.

| Index : csysobjects

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table will not be read.
| Keys are:

| id asc

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

| SCAN Operator

| FROM TABLE

| sysobjects

| Index : ncsysobjects

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table will not be read.
| Keys are:

| name ASC

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| sysobjects

| Using Dynamic Index.

| Forward Scan.

| Positioning by Row IDentifier (RID).

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

log scan

1> use pubs2
1> set showplan on

In thisexample, thewhere clause containstwo disunctions, each on adifferent
column (id and name). There areindexes on each of these columns (csysobjects
and ncsysobjects), S0 the optimizer chose a query plan that uses an index scan
to find all rows whoseid column is 4 and another index scan to find all rows
whose name is“fo0.” Sinceit is possible that asingle row has both an ID of 4
and aname of “foo,” that row would appear twicein theresult set. To eliminate
these duplicate rows, theindex scans return only the row identifiers (RIDs) of
the qualifying rows. The two streams of RIDs are concatenated by the hash
union operator, which also removes any duplicate RIDs. The stream of unique
RIDsis passed to the rid join operator. Therid join operator creates aworktable
and fillsit with asingle-column row with each RID. Therrid join operator then
passes its worktable of RIDs to the rid scan operator. The rid scan operator
passes the worktabl e to the access layer, where it is treated as a keyless
nonclustered index and the rows corresponding to the RIDs are fetched and
returned. The last scan in the showplan output isthe rid scan. As can be seen
from the example output, the rid scan output contains many of the messages
aready discussed above, but it also containstwo messagesthat are printed only
for therid scan:

e Using Dynamic Index —indicatesthe scan isusing the worktable with
RIDsthat was built during execution by therid join operator as anindex to
locate the matching rows.

* Positioning by Row Identifier (RID) —indicatestherowsare
being located directly by the RID.

log scan appears only in triggers that access inserted or deleted tables. These
tables are dynamically built by scanning the transaction log when thetrigger is
executed. Triggers are executed only after insert, delete, or update queries
modify atable with atrigger defined on it for the specific query type. The
following exampleisadelete query on thetitles table, which hasadel etetrigger
called deltitle defined on it:

1> delete from titles where title id = 'xxxx'

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s) under root

The type of query is DELETE.

Query Processing and Abstract Plans 45

Query plan shape

ROOT:EMIT Operator

DELETE Operator
The update mode is direct.

| SCAN Operator
| FROM TABLE

| titles

| Using Clustered Index.

| Index : titleidind

| Forward Scan.

| Positioning by key.

| Keys are:

| title id AsC

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

TO TABLE
titles
Using I/0 Size 2 Kbytes for data pages.

The showplan output up to this point is for the actual delete query. The output
below isfor the trigger, deltitle.

QUERY PLAN FOR STATEMENT 1 (at line 5).
6 operator (s) under root

The type of query is COND.

ROOT:EMIT Operator

RESTRICT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable2 for internal storage.
Key Count: 1
Key Ordering: ASC

SORT Operator
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE

46 Adaptive Server Enterprise

CHAPTER 2 Using showplan

| titles

| Log Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With MRU Buffer Replacement Strategy for data pages.

| SCAN Operator

| FROM TABLE

| salesdetail

| Index : titleidind

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table will not be
read.

| | | | Using I/O Size 2 Kbytes for index leaf pages.

| | | | With LRU Buffer Replacement Strategy for index leaf pages.

QUERY PLAN FOR STATEMENT 2 (at line 8).

STEP 1
The type of query is ROLLBACK TRANSACTION.

QUERY PLAN FOR STATEMENT 3 (at line 9).

STEP 1
The type of query is PRINT.

QUERY PLAN FOR STATEMENT 4 (at line 0).

STEP 1
The type of query is GOTO.

The procedure that defines the deltitle trigger consists of four SQL statements.
Use sp_helptext deltitle to display the text of deltitle. The first statement in
deltitle has been compiled into aquery plan, the other three statements are
compiled into legacy query plansand are executed by the procedural execution
engine, not the query execution engine.

The showplan output for the scan operator for thetitles tableindicatesthat it is
doing a scan of the log by printing Log Scan.

Query Processing and Abstract Plans 47

Query plan shape

delete, insert, and update operators

1>
2>
1>
2>
1>
2>

use pubs2
go

set showplan on

go

The DML operators usually have only one child operator. However, they can
have as many astwo additional child operators to enforce referential integrity
constraints and to deall ocate text data in the case of alter table drop of atext
column.

The DML operators modify data by inserting, deleting, or updating rows
belonging to atarget table.

Child operators of DML operators can be scan operators, join operators, or any
data streaming operator.

The data modification can be done using different update modes, as specified
by this message:
The Update Mode is <Update Modes.

The table update mode may be direct, deferred, deferred for an index, or
deferred for a variable column. The update mode for aworktable is always
direct. See the Performance and Tuning: Monitoring and Analyzing, Chapter
5, “Using set showplan,” for more information.

The target table for the data modification is displayed in this message:

TO TABLE
<Table Name>

Also displayed isthe /O size used for the data modification:
Using I/0 Size <N> Kbytes for data pages.

The next example uses the delete DML operator:

delete from authors where postalcode = '90210'

go

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s)

under root

The type of query is DELETE.

ROOT:EMIT Operator

48

| DELETE Operator

Adaptive Server Enterprise

CHAPTER 2 Using showplan

The update mode is direct.

| SCAN Operator

| FROM TABLE

| authors

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 4 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

TO TABLE
authors
Using I/0 Size 4 Kbytes for data pages.

text delete operator

1>
1>
1>
1>

Another type of query plan where aDML operator can have more than one
child operator isthe alter table drop textcol command, where textcol isthe name
of acolumn whose datatypeistext, image, or unitext. The following queriesand
query plan are an example of the use of the text delete operator:

use tempdb

create table tl (cl int, c2 text, c3 text)
set showplan on

alter table tl drop c2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

5 operator(s) under root

The type of query is ALTER TABLE.

ROOT:EMIT Operator

INSERT Operator
The update mode is direct.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| t1

| Table Scan.

| Forward Scan.

Query Processing and Abstract Plans 49

Query plan shape

| | Positioning at start of table.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data pages.

TEXT DELETE Operator
The update mode is direct.

|
|
|
| | SCAN Operator

| | FROM TABLE
S

| | Table Scan.

| | Forward Scan.

| | Positioning at start of table.

| | Using I/0 Size 2 Kbytes for data pages.

| | With LRU Buffer Replacement Strategy for data pages.
TO TABLE

#syb_altab

Using I/0 Size 2 Kbytes for data pages.

One of the two text columnsin t1 is dropped, using the alter table command.
The showplan output looks like a select into query plan because alter table
internally generated a select into query plan. Theinsert operator callsonitsleft
child operator, the scan of t1, to read the rows of t1, and builds new rows with
only the c1 and c3 columns inserted into #syb_altab. When all the new rows
have been inserted into #syb_altab, the insert operator calls on its right child,
the text delete operator, to delete the text page chains for the c2 columns that
have been dropped from t1. Post-processing replaces the origina pages of t1
with those of #syb_altab to complete the alter table command.

» Thetext delete operator appears only in alter table commands that drop
some, but not all text columns of atable, and it always appears as the right
child of an insert operator.

» Thedeltext operator displays the update mode message, exactly like the
update, delete, and insert operators.

Query plans for referential integrity enforcement

50

Wheninsert, delete, or update operatorsare used on atabl ethat has one or more
referential integrity constraints, the showplan output shows one or two
additional child operators of the DML operator. The two additional operators
are the direct ri filter operator and the deferred ri filter operator. The kind of
referential integrity constraint determines whether one or both of these
operators are present.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

1> use pubs3

Thefollowing exampleisfor aninsert into thetitles table of the pubs3 database.
Thistable has a column called pub_id that referencesthe pub_id column of the
publishers table. The referential integrity constraint on titles.pub_id requires
that every value that isinserted into titles.pub_id must have a corresponding

valuein publishers.pub_id.

The query and its query plan are:

1> set showplan on
1> insert into titles values ("AB1234", "Abcdefg", "test", "9999", 9.95,

1000.00,

10,

null,

getdate(),1)

QUERY PLAN FOR STATEMENT 1 (at line 1).

4 operator(s)

under root

The type of query is INSERT.

ROOT:EMIT Operator

INSERT Operator

The update mode is direct.

| SCAN Operator

TO TABLE
titles

FROM CACHE
DIRECT RI FILTER Operator has 1 children.

SCAN Operator

FROM TABLE
publishers
Index : publishers 6240022232
Forward Scan.
Positioning by key.
Index contains all needed columns. Base table will not be
read.
Keys are:
pub_id ASC
Using I/0 Size 2 Kbytes for index leaf pages.

With LRU Buffer Replacement Strategy for index leaf pages.

Using I/0 Size 2 Kbytes for data pages.

Query Processing and Abstract Plans

51

Query plan shape

Inthe query plan, theinsert operator’sleft child operator isacache scan, which
returns the row of values to be inserted into titles. Theinsert operator’s right
childisadirect i filter operator. The direct ri filter operator executes ascan of the
publishers tableto find a row with avalue of pub_id that matches the value of
pub_id to be inserted into titles. If a matching row isfound, the direct ri filter
operator allowsthe insert to proceed, but if a matching value of pub_id is not
found in publishers, the direct ri filter operator aborts the command. In this
example, the direct ri filter can check and enforce the referential integrity
constraint on titles for each row that isinserted, asit isinserted.

The next example shows a direct ri filter operating in a different mode, together
with adeferred ri filter operator:

1> use pubs3
1> set showplan on
1> update publishers set pub id = '0001'

QUERY PLAN FOR STATEMENT 1 (at line 1).
13 operator (s) under root

The type of query is UPDATE.

ROOT:EMIT Operator

UPDATE Operator
The update mode is deferred index.

| SCAN Operator

| FROM TABLE

| publishers

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

DIRECT RI FILTER Operator has 1 children.

INSERT Operator
The update mode is direct.

SQFILTER Operator has 2 children.

|
|
|
|
|
I |

I

| | | | SCAN Operator
| | | | FROM CACHE

52 Adaptive Server Enterprise

CHAPTER 2 Using showplan

Run subquery 1 (at nesting level 0).

|QUERY PLAN FOR SUBQUERY 1 (at nesting level 0 and at
line 0).

Non-correlated Subquery.
Subquery under an EXISTS predicate.

SCALAR AGGREGATE Operator
Evaluate Ungrouped ANY AGGREGATE.
Scanning only up to the first qualifying row.

| SCAN Operator

| FROM TABLE

| titles

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement strategy for data
pages.

END OF QUERY PLAN FOR SUBQUERY 1.

TO TABLE
Worktablel.

DEFERRED RI FILTER Operator has 1 children.
SQFILTER Operator has 2 children.

SCAN Operator

FROM TABLE

Worktablel.

Table Scan.

Forward Scan.

Positioning at start of table.

Using I/0 Size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

Run subquery 1 (at nesting level 0).
| | QUERY PLAN FOR SUBQUERY 1 (at nesting level 0 and at line 0).

| | Non-correlated Subguery.

Query Processing and Abstract Plans 53

Query plan shape

54

TO TABLE
publishers
Using I/0 Size 2 Kbytes for data pages.

Subquery under an EXISTS predicate.

SCALAR AGGREGATE Operator
Evaluate Ungrouped ANY AGGREGATE.
Scanning only up to the first qualifying row.

| SCAN Operator
| FROM TABLE
| publishers
| Index : publishers 6240022232
| Forward Scan.
| Positioning by key.
| Index contains all needed columns. Base table will
not be read.
Keys are:
pub_id AsSC
Using I/0 Size 2 Kbytes for index leaf pages.
With LRU Buffer Replacement Strategy for index leaf
pages.

END OF QUERY PLAN FOR SUBQUERY 1.

The referential integrity constraint on titles requires that for every value of
titles.pub_id there must exist a value of publishers.pub_id. However, this
example query is changing the values of publisher.pub_id, so a check must be
made to maintain the referential integrity constraint. The example query can
changethe value of publishers.pub_id for several rowsin publishers, so acheck
to make sure that all of the values of titles.pub_id still exist in publisher.pub_id
cannot be done until all rows of publishers have been processed. This example
callsfor deferred referential integrity checking: as each row of publishers is
read, the update operator calls upon the direct ri filter operator to search titles for
arow with the same value of pub_id asthe value that is about to be changed. If
arow isfound, it indicates that thisvalue of pub_id must still exist in publishers
to maintain the referential integrity constraint ontitles, so the value of pub_id is
inserted into WorkTablel.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

join operators

NestedLoopJoin

After al of the rows of publishers have been updated, the update operator calls
upon the deferred ri filter operator to execute its subquery to verify that al of the
values in Worktablel still exist in publishers: The left child operator of the
deferred ri filter is a scan which reads the rows from Worktable1 and the right
child is asq filter operator that executes an existence subquery to check for a
matching valuein publishers. If amatching valueis not found, the commandis
aborted.

The examplesin this section used simple referential integrity constraints,
between only two tables. Adaptive Server allows up to 192 constraints per
table, so it can generate much more complex query plans. When multiple
constraints must be enforced, thereis still only asingle direct ri filter or deferred
ri filter operator in the query plan, but these operators can have multiple
subplans, one for each constraint that must be enforced.

Adaptive Server provides four primary join strategies. NestedLoopJoin,
MergeJoin, HashJoin, and NaryNestedJoin, which is a variant of
NestedLoopJoin. In versions earlier than 15.0, NestedLoopJoin wasthe primary
join strategy. MergeJoin was also available, but was, by default, not enabled.

Each join operator isdescribed in further detail below. A general description of
the each algorithm is provided. These descriptions give a high-level overview
of the processing required for each join strategy.

NestedLoopJoin, the simplest join strategy, is a binary operator with the left
child forming the outer data stream and the right child forming the inner data
stream. For every row from the outer data stream, the inner data stream is
opened. Often, theright child isascan operator. Opening the inner data stream
effectively positionsthe scan on thefirst row that qualifies all of the searchable
arguments. The qualifying row is returned to the NestedLoopJoin’s parent
operator. Subsequent calls to the join operator continue to return qualifying
rowsfrom theinner stream. After the last qualifying row from theinner stream
isreturned for the current outer row, the inner streamisclosed. A call ismade
to get the next qualifying row from the outer stream. The valuesfrom thisrow
provide the searchable arguments used to open and position the scan on the
inner stream. This process continues until the NestedLoopJoin’s | eft child
returnsEnd Of Scan.

1> -- Collect all of the title ids for books written by "Bloom".
2> select ta.title id

Query Processing and Abstract Plans 55

Query plan shape

3>

from titleauthor ta, authors a

4> where a.au_id = ta.au id

5>
6> go

and au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 2).

3 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

56

NESTED LOOP JOIN Operator (Join Type: Inner Join)

SCAN Operator
FROM TABLE
authors
a
Index : aunmind
Forward Scan.

Keys are:
au_lname ASC

Using I/0 Size 2 Kbytes for index leaf pages.
With LRU Buffer Replacement Strategy for index leaf pages.

|

|

|

|

|

|

| Positioning by key.
|

|

|

|

| Using I/O Size 2 Kbytes for data pages.
|

With LRU Buffer Replacement Strategy for data pages.

| SCAN Operator

| FROM TABLE

| titleauthor

| ta

| Using Clustered Index.
| Index : taind

| Forward Scan.

| Positioning by key.

| Keys are:

| au_id AscC

| Using I/O Size 2 Kbytes for data pages.
|

With LRU Buffer Replacement Strategy for data pages.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

MergeJoin

In this example, the authors table is being joined with the titleauthor table. A
NestedLoopJoin strategy has been chosen. The NestedLoopJoin operator’stype
is“Inner Join.” First, the authors tableisopened and positioned on thefirst row
(using the aunmind index) containing an I_name value of “Bloom.” Then, the
titleauthor tableis opened and positioned on thefirst row with an au_id equal to
the au_id value of the current authors’ row using the clustered index “taind.” If
thereisno useful index for lookups on theinner stream, then the optimizer may
generate a reformatting strategy.

Generally, aNestedLoopJoin strategy is effective when there is a useful index
available for qualifying the join predicates on the inner stream.

The MergeJoin operator isabinary operator. The left and right children are the
outer and inner data streams, respectively. Both data streams must be sorted on
the MergeJoin’s key values. First, arow from the outer stream isfetched. This
initializes the MergeJoin’s join key values. Then, rows from the inner stream
arefetched until arow with key valuesthat match or are greater than (lessthan
if key column is descending) is encountered. If the join key matches, the
qualifying row is passed on for additional processing, and a subsequent next
call to the MergeJoin operator continues fetching from the currently active
stream. If the new values are greater than the current comparison key, these
values are used as the new comparison join key while fetching rows from the
other stream. This process continues until one of the data streams is exhausted.

Generally, the MergeJoin strategy is effective when a scan of the data streams
reguires that most of the rows must be processed, and that, if any of the input
streams are large, they are already sorted on the join keys.

1> -- Collect all of the title ids for books written by "Bloom".
2> select ta.title_id
3> from titleauthor ta, authors a

4> where a.au_id

ta.au id

5> and au_lname = "Bloom"

6> go

QUERY PLAN FOR STATEMENT 1 (at line 2).

STEP 1

The type of query is EXECUTE.
Executing a newly cached statement.

QUERY PLAN FOR STATEMENT 1 (at line 2).

Query Processing and Abstract Plans 57

Query plan shape

4 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable2 for internal storage.
Key Count: 1
Key Ordering: ASC

SORT Operator
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| authors

| a

| Index : aunmind

| Forward Scan.

| Positioning by key.
| Keys are:

| au_lname ASC

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.
| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| | SCAN Operator

| | FROM TABLE

| | titleauthor

|| ta

| | Index : auidind

| | Forward Scan.

| | Positioning at index start.

| | Using I/O Size 2 Kbytes for index leaf pages.

| | With LRU Buffer Replacement Strategy for index leaf pages.

| | Using I/O Size 2 Kbytes for data pages.

| | With LRU Buffer Replacement Strategy for data pages.
Inthisexample, asort operator istheleft child or outer stream. The data source
for the sort operator is the authors table. The sort operator is required because
the authors table has no index on au_id that would otherwise provide the
necessary sorted order. A scan of the titleauthor table is the right child/inner
stream. The scan usesthe auidind index, which providesthe necessary ordering
for the MergeJoin strategy.

58 Adaptive Server Enterprise

CHAPTER 2 Using showplan

HashJoin

A row isfetched from the outer stream (the authors tableisthe original source)
to establish an initia join key comparison value. Then rows are fetched from
the titleauthor table until arow with ajoin key equal to or greater than the
comparison key is found.

Inner stream rows with matching keys are stored in a cache in case they need
to be refetched. These rows are refetched when the outer stream contains
duplicate keys. When atitleauthor.au_id value that is greater than the current
join key comparison value is fetched, then the MergeJoin operator starts
fetching from the outer stream until ajoin key value equal to or greater than the
current titleauthor.au_id valueisfound. The scan of theinner stream resumes at
that point.

The MergeJoin operator’s showplan output contains a message indicating what
worktable will be used for the inner stream'’s backing store. The worktableis
written to if the inner rows with duplicate join keys no longer fitsin cached
memory. The width of a cached row is limited to 64KB.

The HashJoin operator is abinary operator. The left child generates the build
input stream. Theright child generates the probe input stream. The build set is
generated by completely draining the build input stream when the first row is
reguested from the HashJoin operator. Every row isread from theinput stream
and hashed into an appropriate bucket using the hash key. If thereisnot enough
memory to hold the entire build set, then a portion of it spillsto disk. This
portion isreferred to as a hash partition and should not be confused with table
partitions. A hash partition consists of a collection of hash buckets. After the
entire left child's stream has been drained, the probe input is read.

Each row from the probe set is hashed. A lookup is donein the corresponding
build bucket to check for rows with matching hash keys. This occursif the
build set’s bucket is memory resident. If it has been spilled, the probe row is
written to the corresponding spilled probe partition. When a probe row’s key
matches a build row’s key, then the necessary projection of the two row’s
columnsiis passed up for additional processing.

Spilled partitions are processed in subsequent recursive passes of the HashJoin
algorithm. New hash seeds are used in each pass so that the data will be
redistributed acrossdifferent hash buckets. Thisrecursive processing continues
until the last spilled partition is completely memory resident. When a hash
partition from the build set contains many duplicates, the HashJoin operator
reverts back to NestedLoopJoin processing.

Query Processing and Abstract Plans 59

Query plan shape

Generally, the HashJoin strategy is good in cases where most of the rows from
the source sets must be processed and there are no inherent useful orderingson
the join keys or there are no interesting orderings that can be promoted to
calling operators (for example, an order by clause on the join key). HashJoins
perform particularly well if one of the data setsis small enough to be memory
resident. In this case, no spilling occurs and no /O is needed to perform that
HashJoin algorithm.

1> -- Collect all of the title ids for books written by "Bloom".
2> select ta.title id

3> from titleauthor ta, authors a

4> where a.au_id = ta.au id

5> and au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 2).
3 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

HASH JOIN Operator (Join Type: Inner Join)
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| authors

| a

| Index : aunmind

| Forward Scan.

| Positioning by key.
| Keys are:

| au_lname ASC

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.
| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

| SCAN Operator

| FROM TABLE

| titleauthor

| ta

| Index : auidind

| Forward Scan.

| Positioning at index start.

60 Adaptive Server Enterprise

CHAPTER 2 Using showplan

| | Using I/O Size 2 Kbytes for index leaf pages.

| | With LRU Buffer Replacement Strategy for index leaf pages.
| | Using I/O Size 2 Kbytes for data pages.

| | With LRU Buffer Replacement Strategy for data pages.

In this example, the source of the build input stream is an index scan of
author.aunmind.

Only rows with an au_Iname value of “Bloom™ are returned from this scan.
These rows are then hashed on their au_id value and placed into their
corresponding hash bucket. After theinitial build phaseiscompleted, the probe
stream is opened and scanned. Each row from the source index,
titleauthor.auidind, is hashed on the au_id column. The resulting hash valueis
used to determine which bucket in the build set should be searched for
matching hash keys. Each row from the build set’s hash bucket is compared to
the probe row’s hash key for equality. If the row matches, then the
titleauthor.au_id column is returned to the emit operator.

The HashJoin operator’s showplan output contains a message indicating what
worktable will be used for the spilled partition’s backing store. The input row
width islimited to 64KB.

NaryNestedLoopJoin operator

The NaryNestedLoopJoin strategy is never evaluated or chosen by the
optimizer. It is an operator that is constructed during code generation. If the
compiler finds series of two or more | eft-deep NestedLoopJoins, it attempts to
transform them into an NaryNestedLoopJoin operator. Two additional
reguirements allow for transformation scan; each NestedLoopJoin operator has
an “inner join” type and the right child of each NestedLoopJoin isascan
operator. A restrict operator is permitted above the scan operator.

NaryNestedLoopJoin execution has a performance benefit over the execution of
a series of NestedLoopJoin operators. The example below demonstrates this.
There is one fundamental difference between the two methods of execution.
With a series of NestedLoopJoin, a scan may eliminate rows based on
searchable argument valuesinitialized by an earlier scan. That scan may not be
the one that immediately preceded the failing scan. With a series of
NestedLoopJoins, the previous scan would be completely drained although it
has no effect on the failing scan. This could result in a significant amount of
needless 1/0. With NaryNestedLoopJoins, the next row fetched comes from the
scan that produced the failing searchable argument value, which isfar more
efficient.

1> -- Collect the author id and name for all authors with the

Query Processing and Abstract Plans 61

Query plan shape

2> -- last name "Bloom" and who have a listed title and the
3> -- author id is the same as the title id.

4> select a.au_id, au_fname, au_lname

5> from titles t, titleauthor ta, authors a

6> where a.au_id = ta.au_id

7> and ta.title id = t.title id

8> and a.au_id = t.title id

9> and au_lname = "Bloom"

5 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

NARY NESTED LOOP JOIN Operator has 3 children.

| SCAN Operator

| FROM TABLE

| authors

| a

| Index : aunmind

| Forward Scan.

| Positioning by key.
| Keys are:

| au_lname ASC

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.
| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| titleauthor

| ta

| Index : auidind

| Forward Scan.

| Positioning by key.
| Keys are:

| au_id ASC

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.
| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

62 Adaptive Server Enterprise

CHAPTER 2 Using showplan

SCAN Operator
FROM TABLE
titles
t
Using Clustered Index.
Index : titleidind
Forward Scan.
Positioning by key.
Keys are:
title id ASC
Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

Figure 2-3 depicts a series of NestedLoopJoins.

Figure 2-3: Emit operator tree with NestedLoopJoins

Emit
(VA=6)

/

NestLoopJoin
InnerJoin
(VA = 5)

\

NestLoopJoin IndexScan
InnerJoin titleidind (t2)
(VA = 3) (VA = 4)

N\

IndexScan Restrict
aunmid (a) (0) (0) (4) (0)
(VA = 0) (VA = 2)

/

IndexScan
auidind (ta)
(VA =1)

All query processor operators are assigned a virtual address. Thelinesin
Figure 2-3 with va = report the virtual address for a given operator.

Query Processing and Abstract Plans 63

Query plan shape

64

The effective join order is authors, titleauthor, titles. A restrict operator is the
parent operator of the scan on titleauthors. This plan istransformed into the
NaryNestedLoopJoin plan below:

Figure 2-4: NaryNestedLoopJoin operator

Emit
(VA=6)

/

NaryNLJoin

(VA = 4) \
/ NaryNLJoin

(VA = 4)
IndexScan /
(VA = 0) \

: Restrict
aunmid (a) (ve: =";) NaryNLJoin
/J) (0) (4) (0) / (VA = 4)
IndexScan IndexScan
(VA = 1) (VA = 3)
auidind(ta) titleidind(t)

The transformation retains the original join order of authors, titleauthor, and
titles. In this example, the scan of titles has two searchable arguments on it—
ta.title_id = t.title_id and a.au_id = t.title_id. So, the scan of titles fails because of
the searchable argument value established by the scan of titleauthor or it fails
because of the searchable argument val ue established by the scan of authors. If
no rows are returned from a scan of titles because of the searchable argument
value set by the scan of authors, there is no point in continuing the scan of
titleauthor. For every row fetched from titleauthor, the scan of titles fails. Itis
only when a new row is fetched from authors that the scan of titles might
succeed. Thisiswhy NaryNestedLoopJoins have been implemented; they
eliminate the useless draining of tables that have no impact on the rows
returned by successive scans. |nthe example, the NaryNestedLoopJoin operator
closes the scan of titleauthor, fetches a new row from authors, and repositions
the scan of titleauthor based on the au_id fetched from authors. Again, this can
be a significant performance improvement as it eliminates the needless
draining of the titleauthor table and the associated 1/0O that could occur.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Distinct operators

There are three operators that can be used to enforce distinctness: GroupSorted
(Distinct), SortOp (Distinct), and HashDistinctOp. They are all unary operators.
Each has advantages and disadvantages. The optimizer chooses an efficient
distinct operator with respect to its use within the entire query plan’s context.

See Table 1-6 on page 24 for alist and description of all query processor
operators.

GroupSorted (Distinct) operator

The GroupSorted (Distinct) operator can be used to apply distinctness. It
requiresthat the input stream is already sorted on the distinct columns. It reads
arow fromitschild operator and initializesthe current distinct columns' values
to befiltered. Therow isreturned to the parent operator. When the group sorted
operator is called again to fetch another row, it fetches another row from its
child and compares the values to the current cached values. If thevalueisa
duplicate, then the row is discarded and the child is called again to fetch anew
row. This process continues until a new distinct row is found. The distinct
columns’ values for this row are cached and will be used later to eliminate
nondistinct rows. The current row isreturned to the parent operator for further
processing.

The GroupSorted (Distinct) operator returns a sorted stream. The fact that it
returns a sorted and distinct data stream are properties that the optimizer can
exploit to improve performance in additional upstream processing. The
GroupSorted (Distinct) operator is a nonblocking operator. It returns a distinct
row to its parent as soon asit isfetched. It does not require that the entireinput
stream is processed before it can start returning rows. The following query
collects distinct last and first author’s names.

1> select distinct au_lname, au_fname
2> from authors

3> where au_ lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 2).
2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| GROUP SORTED Operator

Query Processing and Abstract Plans 65

Query plan shape

Distinct

|

|

| | SCAN Operator

| | FROM TABLE

| | authors

| | Index : aunmind

| | Forward Scan.

| | Positioning by key.

| | Index contains all needed columns. Base table will not be read.

| | Keys are:

| | au_lname ASC

| | Using I/O Size 2 Kbytes for index leaf pages.

| | With LRU Buffer Replacement Strategy for index leaf pages.
The SortOp (Distinct) operator is chosen in this query plan to apply the distinct
property because the scan operator is returning rows in sorted order for the
distinct columns au_Iname and au_fname. By using the GroupSorted operator
here, thereisno 1/0 and minimal CPU overhead.

The GroupSorted (Distinct) operator can also be used to implement vector
aggregation. See “Vector aggregation operators’ on page 68 for more
information. The showplan output printsthelinebistinct toindicatethat this
GroupSorted (Distinct) operator isimplementing the distinct property.

SortOp (Distinct) operator

The SortOp (Distinct) operator is a unary operator. It does not require that its
input stream is already sorted on the distinct key columns. It isablocking
operator that drainsits child operator’s stream and sorts the rows as they are
read. A distinct row is returned to the parent operator after all rows have been
sorted. Rows are returned sorted on the distinct key columns. Aninternal
worktableisused as abacking storein case theinput set does not fit entirely in
memory.

1> select distinct au_lname, au_fname
2> from authors

3> where city = "Oakland"

2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| SORT Operator
| Using Worktablel for internal storage.

66 Adaptive Server Enterprise

CHAPTER 2 Using showplan

SCAN Operator
FROM TABLE
authors
Table Scan.
Forward Scan.
Positioning at start of table.
Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

The scan of the authors table does not return rows sorted on the distinct key
columns. This requires that a SortOp (Distinct) operator be used rather than a
GroupSorted (Distinct) operator. The sort operator’s distinct key columns are
au_lname and au_fname. The showplan output indicatesthat Worktablel isused
for disk storage in case the input set does not fit entirely in memory.

HashDistinctOp operator

1>
2>
3>
4>

The HashDistinctOp operator does not require that itsinput set be sorted on the
distinct key columns. It isanonblocking operator. Rowsare read from the child
operator and are hashed on the distinct key columns. Thisdeterminestherow’s
bucket position. The corresponding bucket is searched to seeiif the key already
exists. Therow isdiscarded if it contains a duplicate key and another row is
fetched from the child operator. The row is added to the bucket if no duplicate
distinct key already exists and the row is passed up to the parent operator for
further processing. Rows are not returned sorted on the distinct key columns.

TheHashDistinctOp operator isgenerally used when the input set is not already
sorted on the distinct key columns or when the optimizer is not able to exploit
the ordering coming out of the distinct processing later in the plan.

select distinct au_ lname, au_ fname
from authors a
where city = "Oakland"

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s)

under root

The type of query is SELECT.

ROOT:EMIT Operator

|HASH DISTINCT Operator
| Using Worktablel for internal storage.

Query Processing and Abstract Plans 67

Query plan shape

SCAN Operator
FROM TABLE
authors

Table Scan.

Forward Scan.

Positioning at start of table.

Using I/0 Size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

Inthisexample, the output of the authors table scanisnot sorted. The optimizer
can choose either a SortOp (Distinct) or HashDistinctOp strategy. The ordering
provided by a SortOp (Distinct) strategy is not useful anywhere elsein the plan,
so the optimizer will probably choose a HashDistinctOp strategy. The
optimizer’sdecision is ultimately based on cost estimates. The HashDistinctOp
istypically less expensive for unsorted input streams asit isasieve that can
eliminate rows on the fly for resident partitions. The SortOp (Distinct) operator
cannot eliminate any rows until the entire data set has been sorted.

The showplan output for the HashDistinctOp operator reports that Worktable1
will beused. A worktableis needed in case the distinct row result set cannot fit
in memory. In that case, partially processed groups will be spilled to disk.

Vector aggregation operators

68

There are two unary operators used for vector aggregation. They are the
GroupSortedOp (aggregation mode), the HashVectorAgOp, and the
GrouplnsertingOp operators.

See Table 1-6 on page 24 for alist and description of al query processor
operators.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

GroupSortedOp (Aggregation) operator

The GroupSortedOp (Aggregation) operator is asimple variant of the
GroupSorted (Distinct) operator describedin“ GroupSorted (Distinct) operator”
on page 65. The GroupSortedOp (Aggregation) operator requires that the input
set is sorted on the group by columns. The algorithm is very similar. A row is
read from the child operator. If the row isthe start of a new vector, then its
grouping columns are cached and the aggregation results are initialized. If the
row belongs to the current group being processed, the aggregate functions are
applied to the aggregate results. When the child operator returns a row that
startsanew group or End Of Scan, the current vector and its aggregated
values are returned to the parent operator.

Thisisanonblocking operator similar to the GroupSorted (Distinct) operator
with one difference. Thefirst row in theGroupSortedOp (Aggregation) operator
is returned after an entire group is processed, where the first row in the
GroupSorted (Distinct) operator is returned at the start of a new group. This
example collectsalist of al citieswith the number of authorsthat livein each

city.
1> select city, total authors = count (*)
2> from authors
3> group by city
4> plan
5> " (group_ sorted
6> (sort (scan authors))
7>)"
8> go

QUERY PLAN FOR STATEMENT 1 (at line 3).
Optimized using the Abstract Plan in the PLAN clause.

3 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator
GROUP SORTED Operator

Evaluate Grouped COUNT AGGREGATE.

| Using Worktablel for internal storage.

|
|
|
| | SORT Operator
|
|
| | | SCAN Operator

Query Processing and Abstract Plans 69

Query plan shape

| FROM TABLE

| authors

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

In this query plan, the scan of authors does not return rows in grouping order.
A sort operator is applied to order the stream based on the grouping column
city. At this point, a GroupSortedOp (Aggregation) operator can be applied to
evaluate the count() aggregate.

The GroupSortedOp (Aggregation) operator showplan output reports the
aggregate functions being applied as:

| Evaluate Grouped COUNT AGGREGATE.

HashVectorAgOp operator

The HashVectorAgOp operator is a blocking operator. All rows from the child
operator must be processed before the first row from the HashVectorAgOp
operator can bereturned to its parent operator. Other than this, the algorithmis
similar to the HashDistinctOp operator’s algorithm.

Rows are fetched from the child operator. Each row is hashed on the query’s
grouping columns. The bucket that is hashed is searched to seeif the vector
already exists.

If the group by values do not exi<t, the vector isadded and the aggregate values
areinitialized using this first row. If the group by values do exist, the current
row isaggregated to the existing values. Thisexample collectsalist of al cities
with the number of authors that livein each city.

1> select city, total authors = count (*)
2> from authors

3> group by city

4> go

QUERY PLAN FOR STATEMENT 1 (at line 3).
2 operator(s) under root
The type of query is SELECT.

ROOT:EMIT Operator

70 Adaptive Server Enterprise

CHAPTER 2 Using showplan

|HASH VECTOR AGGREGATE Operator

| GROUP BY
Evaluate Grouped COUNT AGGREGATE.
Using Worktablel for internal storage.

GrouplnsertingOp

| SCAN Operator
| FROM TABLE

| authors

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

In this query plan, the HashVectorAgOp operator reads all of the rows from its
child operator, which is scanning the authors table. Each row is checked to see
if thereisaready an entry bucket entry for the current city value. If thereisnot,
ahash entry row is added with the new city grouping value and the count result
isinitialized to 1. If there is already a hash entry for the new row’s city value,
the aggregation function is applied. In this case, the count result is
incriminated.

The showplan output prints a group by message specifically for the
HashVectorAgOp operator, then prints the grouped aggregation messages:

| Evaluate Grouped COUNT AGGREGATE.

The showplan output reports what worktable will be used to store spilled
groups and unprocessed rows:

| Using Worktablel for internal storage.

The GrouplnsertingOp is ablocking operator. All rows from the child operator
must be processed before the first row can be returned from the
GrouplnsertingOp.

Query Processing and Abstract Plans 71

Query plan shape

The GrouplnsertingOp used in earlier versions of Adaptive Server for
generating grouped tables. It islimited to 31 or fewer columnsin the group by
clause. The operator starts by creating awork table with a clustered index of
the grouping columns. As each row isfetched from the child, alookup into the
work tableisdone based on the grouping columns. If no row isfound, then the
row isinserted. This effectively creates a new group and initializesits
aggregate values. If arow isfound, then the new aggregate val ues are updated
based on evaluating the new values. The GrouplnsertingOp has the side effect
of returning rows ordered by the grouping columns.

1> select city, total authors = count (*)

2> from authors

3> group by city

4> plan

5> “(group inserting (i_scan auidind authors))”
6> go

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

STEP 1
The type of query is SELECT.

2 operator(s) under root

ROOT:EMIT Operator

GROUP INSERTING Operator

GROUP BY

Evaluate Grouped COUNT AGGREGATE
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| authors

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

72 Adaptive Server Enterprise

CHAPTER 2 Using showplan

In this example, the group inserting operator starts by building a worktable
with a clustered index keyed on the city column. The group inserting operator
proceeds to drain the authors table. For each row, alookup is done on the city
value. If thereis no row in the aggregation worktable with the current city
value, then the row isinserted. This creates a new group for the current city
value with aninitialized count value. If the row for the current city valueis
found, then an evaluation is done to increment the count aggregate value.

compute by message

processing isdonein the emit operator. It requiresthat the emit operator’sinput
stream be sorted according to any order by requirementsin the query. The
processing is similar to what is done in the GroupSortedOp (aggregation mode)
operator. Each row read from the child is checked to seeif it startsanew group.
If it does not, the aggregate functions are applied as appropriate to the query’s
reguested groups. If anew group isstarted, the current group and its aggregated
values are returned to the user. A new group is then started and its aggregate
values are initialized from the new row’s values. This example collects an
ordered list of all cities and reports a count of the number of entries for each
city after the city list.

1> select city

2> from authors

3> order by city

4> compute count (city) by city
5> go

QUERY PLAN FOR STATEMENT 1 (at line 3).

2 operator(s) under root

The type of query is SELECT.
Emit with Compute semantics

ROOT:EMIT Operator

| SORT Operator
| Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| authors

| Table Scan.

| Forward Scan.

| Positioning at start of table.

Query Processing and Abstract Plans 73

Union operators

Using I/0 Size 2 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

In this example, the emit operator’sinput stream is sorted on the city attribute.
For each row, the compute by count value is incremented. When a new city
valueisfetched, the current city’s values and associated count valueisreturned
to the user. The new city value becomes the new compute by grouping value
and its count isinitialized to one.

Union operators

union all operator

The union all operator merges several compatible input streams without
performing any duplicate elimination. Every data row that enters the union all
operator isincluded in the operator’s output stream.

The union all operator is a nary operator that displays this message:
UNION ALL OPERATOR has N children.
<N> isthe number of input streams into the operator.

This example demonstrates the use of union all:

1> select * from sysindexes where id < 100

2> union all

3> select * from sysindexes where id > 200

4> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1

The type of query is SELECT.

3 operator(s)

74

under root
ROOT:EMIT Operator

|UNION ALL Operator has 2 children.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

| SCAN Operator

| FROM TABLE

| sysindexes

| Using Clustered Index.
| Index : csysindexes
| Forward Scan.

| Positioning by key.
| Keys are:

| 1id asc

| Using I/0 Size 2 Kbytes for
| with LRU Buffer Replacement
| Using I/0 Size 2 Kbytes for
| with LRU Buffer Replacement

| SCAN Operator

| FROM TABLE

| sysindexes

| Using Clustered Index
| Index : csysindexes
| Forward scan.

| Positioning by key.
| Keys are:

| 1id asc

| Using I/0 Size 2 Kbytes for
| with LRU Buffer Replacement
| Using I/0 Size 2 Kbytes for
| with LRU Buffer Replacement

index leaf pages.

Strategy for index leaf pages.
data pages.

Strategy for data pages.

index leaf pages.

Strategy for index leaf pages.
data pages.

Strategy for data pages.

The union all operator starts by fetching all rowsfromitsleftmost child. Inthis
example, it returns al of the sysindexes rows with anid < 100. As each child
operator’s datastream is emptied, the union all operator moves on to the child
operator immediately to itsright. This stream is opened and emptied. This
continues until the last (the Nth) child operator is emptied.

merge union operator

The merge union operator performs a union all operation on several sorted
compatible data streams and eliminates duplicates within these streams.

The merge union operator is a nary operator that displays this message:
MERGE UNION OPERATOR has <N> children.

<n> isthe number of input streams into the operator.

Query Processing and Abstract Plans 75

Union operators

hash union

The hash union operator uses Adaptive Server hashing algorithmsto
simultaneously perform a union all operation on several data streams and
hash-based duplicate elimination.

The hash union operator is a nary operator that displays this message:
HASH UNION OPERATOR has <N> children.

<N> isthe number of input streamsinto the operator.

It also displays the name of the worktable it uses, in this format:

HASH UNION OPERATOR Using Worktable <X> for internal
storage.

Thisworktableis used by the hash union operator to temporarily store data for
the current iteration that cannot be processed in the memory currently
available.

This example demonstrates the use of hash union:

select * from sysindexes
union
select * from sysindexes

QUERY PLAN FOR STATEMENT 1 (at line 8).
Executed in parallel by coordinating process and 2 worker processes.

6 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator

SORT Operator
Using Worktable2 for internal storage.

| EXCHANGE Operator
| Executed in parallel by 2 Producer and 1 Consumer processes.

EXCHANGE: EMIT Operator

| HASH UNION Operator has 2 children.

| Using Worktablel for internal storage.
| | SCAN Operator

| | FROM TABLE

76 Adaptive Server Enterprise

CHAPTER 2 Using showplan

| sysindexes

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
|

pages.

| SCAN Operator

| FROM TABLE

| sysindexes

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
|

pages.

ScalarAggOp operator

1>
2>
1>
2>
1>
2>

The ScalarAggOp operator keeps track of running information about an input
data stream, such as the number of rows in the stream, or the maximum value
of agiven column in the stream.

The ScalarAggOp operator printsalist of up to 10 messages describing the
scalar aggregation operations it executes. The message has the following
format:

Evaluate Ungrouped <Type of Aggregate> Aggregate

<Type of Aggregates> canbeany of thefollowing: count, sum, average, min,
max, any, once-unique, count-unique, sum-unigue, average-unique, Or once.

The following query performs a ScalarAggOp (in other words, unwrapped)
aggregation on the authors table in the pubs2 database:

use pubs2

go

set showplan on

go

select count (*) from authors
go

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s) under root

Query Processing and Abstract Plans 77

Union operators

The type of query is SELECT.

ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| SCAN Operator

| FROM TABLE

| authors

| Index : aunmind

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table will not be read.
| Using I/O Size 4 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index leaf pages.

(1 row affected)

The ScalarAggOp message indicates that the query to be executed is an
ungrouped count aggregation.

restrict operator

The restrict operator is a unary operator that eval uates expressions based on
column values. The restrict operator is associated with multiple column
evaluations lists that can be processed before fetching a row from the child
operator, after fetching a row from the child operator, or to compute the value
of virtual columns after fetching arow from the child operator.

sort operator

78

The sort operator has only one child operator within the query plan. Itsroleis
to generate an output data stream from the input stream, using a specified
sorting key.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

1>
2>
1>
2>
1>
2>

The sort operator may execute a streaming sort when possible, but may also
have to store results temporarily into aworktable. The sort operator displays
the worktable’'s name in this format:

Using Worktable<N> for internal storage.
where <nN> isanumeric identifier for the worktable within the showplan output.

Here is an example of asimple query plan using a sort operator and a
worktable;

use pubs2

go

set showplan on

go

select au_id from authors order by postalcode
go

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

SORT Operator
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| authors

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 4 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

807-91-6654
527-72-3246
722-51-5454
712-45-1867
341-22-1782
899-46-2035
998-72-3567
172-32-1176

Query Processing and Abstract Plans

79

Union operators

486-29-1786
427-17-2319
846-92-7186
672-71-3249
274-80-9391
724-08-9931
756-30-7391
724-80-9391
213-46-8915
238-95-7766
409-56-7008
267-41-2394
472-27-2349
893-72-1158
648-92-1872

(23 rows affected)

store operator

80

The sort operator drains its child operator and sorts the rows. In this case, it
sorts each row fetched from the authors table using the postalcode attribute. If
all of the rowsfit into memory, then no datais spilled to disk. But, if the input
data’s size exceeds the available buffer space, then sorted runs are spilled to
disk. These runs are recursively merged into larger sorted runs until there are
fewer runs than there are available buffers to read and merge the runs with.

The store operator is used to create aworktable, fill it, and possibly create an
index on it. As part of the execution of a query plan, the worktable is used by
other operatorsin the plan. A sequencer operator guarantees that the plan
fragment corresponding to the worktable and potential index creation is
executed before other plan fragments that use the worktable. Thisisimportant
when a plan is executed in parallel, because execution processes operate
asynchronously.

Reformatting strategies use the store operator to create a worktable with a
clustered index on it.

If the store operator isused for areformatting operation, it prints this message:

Worktable <X> created, in <L> locking mode for
reformatting.

Thelocking mode <> hasto be one of “allpages,” “datapages,” or “datarows.”
The store operator also prints this message:

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Creating clustered index.

If the store operator is not used for areformatting operation, it printsthis
message:
Worktable <X> created, in <L> locking mode.

The locking mode <> hasto be one of “allpages,” “datapages’, or
“datarows.”

Thefollowing exampl e appliesto the store operator, aswell asto thesequencer
operator.

1> select*from table a, tab2 b where a.c4 = b.c4 and a.c2 < 10
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.
STEP 1

The type of query is SELECT.

7 operator (s) under root
ROOT:EMIT Operator
SEQUENCER Operator has 2 children.

STORE Operator
Worktablel created, in allpages locking mode, for REFORMATTING.
Creating clustered index.

INSERT Operator
The update mode is direct.

| SCAN Operator

| FROM TABLE

| bigun

| b

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

TO TABLE
Worktablel.

|NESTED LOOP JOIN (Join Type: Inner Join)

Query Processing and Abstract Plans 81

Union operators

| SCAN Operator

| FROM TABLE

| bigun

| a

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

| SCAN Operator

| FROM TABLE

| Worktablel.

| Using Clustered Index.

| Forward Scan.

| Positioning key.

| Using I/0 Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

In the exampl e plan shown above, the STORE operator isused in areformatting
strategy. It islocated directly below the SEQUENCER operator in the leftmost
child of the SEQUENCER operator.

The STORE operator creates Worktablel, which isfilled by the INSERT
operator below it. The STORE operator then creates a clustered index on
Worktablel. Theindex isbuilt on the join key “b.c4”.

sequencer operator

Thesequencer operator isanary operator used to sequentially execute each the
child plans below it. The sequencer operator is used in reformatting plans, and
certain aggregate processing plans.

The sequencer operator executes each of its child subplans, except for the
rightmost one. Once all the left child subplans are executed, the rightmost
subplan is executed.

The sequencer operator displays this message:
SEQUENCER operator has N children.
Notice the query plan from the section immediately above the store operator.

1> select * from tabl a, tab2 b where a.c4 - b.c4 and a.c2 < 10

82 Adaptive Server Enterprise

CHAPTER 2 Using showplan

2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

STEP 1
The type of query is SELECT.

7 operator(s) under root

ROOT:EMIT Operator

SEQUENCER Operator has 2 children.
STORE Operator

Creating clustered index.

INSERT Operator
The update mode is direct.

| SCAN Operator

| FROM TABLE

| tab2

| b

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

TO TABLE
Worktablel.

NESTED LOOP JOIN Operator (Join Type: Inner Join)

| SCAN Operator

| FROM TABLE

| tabl

| a

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

| SCAN Operator

Query Processing and Abstract Plans

Worktablel created, in allpages locking mode, for REFORMATTING.

83

Union operators

| FROM TABLE

| Worktablel.

| Using Clustered Index.

| Forward Scan.

| Positioning by key.

| Using I/0 Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

Inthisexample, the SEQUENCER operator isused to implement areformatting
strategy. Theleftmost branch of the SEQUENCER operator creates a clustered
index on Worktablel. This branch is executed and closed before the
SEQUENCER operator proceeds on to the next child operator. When the
SEQUENCER operator arrives at the rightmost child, it opens it and begins to
drain it, returning rows back to its parent operator. The design intent of the
SEQUENCER operator isfor operatorsin the rightmost branch to take
advantage of worktables created in the preceding outer branches of the
SEQUENCER operator. In this example, Worktablel is used in a nested-loop
join strategy. The scan of Worktablel is positioned by a key on its clustered
index for each row that comes from the outer scan of tabl.

remote scan operator

scroll operator

84

The remote scan operator sendsa SQL query to aremote server for execution.
It then processes the results returned by the remote server, if any. The remote
scan operator displays the formatted text of the SQL query it handles.

The remote scan operator has 0 or 1 child operators.

The scroll operator encapsul ates the functionality of scrollable cursorsin
Adaptive Server. Scrollable cursors may be insensitive, meaning that they
display asnapshot of their associated data, taken when the cursor is opened, or
semi-sensitive, meaning that the next rows to be fetched are retrieved from the
live data.

The scroll operator is aunary operator that displays this message:
SCROLL OPERATOR (Sensitive Type: <T>)
The type may be “insensitive” or “semi-sensitive.”

Thisisan example of aplan featuring an insensitive scrollable cursor:

Adaptive Server Enterprise

CHAPTER 2

Using showplan

1> use pubs2

2> go

1> declare CI insensitive scroll cursor for
2> select au_lname, au_id from authors

3> go

1> set showplan on

2> go

1> open CI

2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1

The type of query is OPEN CURSOR CI.

QUERY PLAN FOR STATEMENT 1 (at line 2).

2 operator(s) under root

The type of query is DECLARE CURSOR.

ROOT:EMIT Operator

Query Processing and Abstract Plans

SCROLL Operator (Sensitive Type: Insensitive)

Using Worktablel for internal storage.

SCAN Operator
FROM TABLE
authors
Table Scan.
Forward Scan.
Positioning at start of table.
Using I/0 Size 4 Kbytes for data pages.
With LRU Buffer Replacement Strategy for data pages.

The scroll operator isthe child operator of the root emit operator, and its only
child isthe scan operator on the authors table. The scroll operator message
specifies that the CI cursor isinsensitive.

Scrollable cursor rows are initially cached memory. Worktablel is used as a
backing store for this cache when the amount of data processed exceeds the
cache’s physical memory limits.

85

Union operators

rid join operator

Therid join operator is a binary operator that joins two data streams, based on
row |1Ds generated for the same source table. Each datarow in a SQL tableis
associated with aunique row ID or RID. A rid-join can be thought of asa
special case of aself-join query. Theleft child fills aworktable with the set of
uniquely qualifying RIDs. The RIDs are the result of applying adistinct filter
to the RIDsreturned from two or more disparate index cases of the same source
table.

Therid join operator is used to implement the general-or strategy. The
general-or strategy is often used when aquery’s predicate contains acollection
of digunctions that can be qualified by different indexes on the sametable. In
thiscase, each index is scanned based on the predicatesthat can be qualified by
that index. For each index row that qualifies, aRID isreturned. The returned
RIDs are processed for uniqueness so that the same row will not be returned
twice. This could happen if two or more of the disjuncts qualify the same row.
Therid join operator inserts the unique RIDs into a worktable. The worktable
of unique RIDsis passed to the scan operator in therid-join’sright branch. The
access methods are capabl e of iteratively fetching the next RID to be processed
directly from the worktable and |ooking up the associated row. Thisrow isthen
returned to therid join parent operator.

Therid join operator displays this message:
Using Worktable <N> for internal storage.
This worktable is used to store the unique RIDs generated from the left child.

The following example demonstrates the showplan output for the rid join
operator.

1> select * from tabl a where a.cl = 10 or a.c3 = 10

QUERY PLAN FOR STATEMENT 1 (at line 2).

STEP 1

The type of query is SELECT.

6 operator (s) under root.

86

ROOT:EMIT Operator

RID JOIN Operator
Using Worktable2 for internal storage.

|HASH UNION Operator has 2 children.

Adaptive Server Enterprise

CHAPTER 2 Using showplan

Key Count: 1

| SCAN Operator
| FROM TABLE

| tabl

| a

| Index:tablidx

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table will not be read.
| Keys are:

| c1 asc

| Using I/0 Size 2 Kbytes for index leaf pages.

| with LRU Buffer Replacement Strategy for index leaf pages.

SCAN Operator
FROM TABLE
tabl
a
Index:tablidx2
Forward Scan.
Positioning by key.
Index contains all needed columns. Base table will not be read.
Keys are:
c3 ASC
Using I/0 Size 2 Kbytes for index leaf pages.
With LRU Buffer Replacement Strategy for index leaf pages.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| tabl

| a

| Using Dynamic Index.

| Forward Scan.

| Positioning by Row IDentifier (RID).

| Using I/0 Size 2 Kbytes for data pages.

| with LRU Buffer Replacement Strategy for data pages.

Query Processing and Abstract Plans 87

Union operators

In this example, theindex “tablidx” is scanned to get all RIDs from tabl that
have acl value of 10. The index “tablidx2” is scanned to get al RIDs from
tabl that have a c3 value of 10. The HASH UNION operator is used to eliminate
duplicate RIDs. There will be duplicate RIDs for any tabl row(s) where both
¢l and c3 rows have avalue of 10. The RID JOIN operator inserts all of the
returned rows into Worktable2. Worktable2 is passed to the scan of tabl after
it has been completely filled. The access methods fetch the first RID, look up
the associated row, and return it to the RID JOIN operator. On subsequent calls
to the tabl's scan operator, the access methods fetch the next RID to be
processed and return its associated row.

sqfilter operator

The sqfilter operator is a nary operator that executes subqueries. Its leftmost
child represents the outer query, and the other children represent query plan
fragments associated with one or more subqueries.

The leftmost child generates correlation values that are substituted into the
other child plans.

The sqfilter operator displays this message:
SQFILTER Operator has <N> children.
This example illustrates the use of sqfilter.

select pub name from publishers
where pub id =
(select distinct titles.pub id from titles
where publishers.pub id = titles.pub id
and price > $1000)
QUERY PLAN FOR STATEMENT 1 (at line 1).
4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

SQFILTER Operator has 2 children.
| SCAN Operator
| FROM TABLE

| publishers

|

Table Scan.
Forward Scan.

88 Adaptive Server Enterprise

CHAPTER 2 Using showplan

| Positioning at start of table.
| Using I/0 Size 8 Kbytes for data pages.
| With LRU Buffer Replacement Strategy for data pages.

Run subquery 1 (at nesting level 1)
QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3)

Correlated Subquery
Subquery under an EXPRESSION predicate.

SCALAR AGGREGATE Operator
Evaluate Ungrouped ONCE-UNIQUE AGGREGATE

| SCAN Operator

| FROM TABLE

| titles

| Table Scan.

| Forward Scan.

| Postitioning at start of table.

| Using I/0 Size 8 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

END OF QUERY PLAN FOR SUBQUERY 1

The sqfilter operator has 2 children in this example. The leftmost child isthe
query’s outer block. It isasimple scan of the publishers table. Theright child
is used to evaluate the query’s subquery. The sdfilter will fetch rows from the
outer block. For every row from the outer block, it will invoke the right child
to evaluate the subquery. If the subquery evaluates to TRUE, then arow will
be returned to the sqfilter’s parent operator.

exchange operator

Theexchange operator isaunary operator that encapsul ates parallel processing
of Adaptive Server SQL queries. It can be located almost anywherein a query
plan. It divides the query plan into plan fragments. A plan fragment is a query
plan treethat is rooted at an emit or exchange:emit operator and has leaves that
arescan or exchange operators. A seria planisaplan fragment that isexecuted
by a single process.

Query Processing and Abstract Plans 89

Union operators

An exchange operator’s child operator is always an exchange:emit operator.
The exchange:emit operator isthe root of anew plan fragment. An exchange
operator has an associated server process that acts as alocal execution
coordinator for the exchange operator’sworker processes. It is called the Beta
process. The worker processes execute the plan fragment as directed by the
parent exchange operator and its Beta process. The plan fragment is often
executed in aparallel fashion, using two or more processes. The exchange
operator and Beta process coordinate the activities including the exchange of
data between the fragment boundaries.

The topmost plan fragment, rooted at an emit operator rather than an
exchange:emit operator, is executed by the Alpha process. The Alpha process
isaconsumer process associated with the user connection. The Alpha process
isthe global coordinator of al of the query plan's worker processes. It is
responsible for initially setting up all of the plan fragment’s worker processes
and eventually freeing them. It manages and coordinates all of the fragment’s
worker processesin the case of an exception.

The exchange operator displays this message:

Executed in parallel by N producer and P consumer processes.

1>
2>
1>
2>
1>
2>

use master
go

set showplan on

go

select count (*)

go

The number of producersrefersto the number of worker processesthat execute
the plan fragment located beneath the exchange operator. The number of
consumers refers to the number of worker processes that execute the plan
fragment that contai ns the exchange operator. The consumers process the data
passed to them by the producers. Datais exchanged between the producer and
consumer processes through a pipe set up in the exchange operator. The
producer’s exchange:emit operator writes rows into the pipe while consumers
read rowsfrom this pipe. The pipe mechanismisresponsiblefor synchronizing
producer writes and consumer reads such that no dataislost.

This exampleillustrates a parallel query in the master database against the
system table sysmessages:

from sysmessages (parallel 4)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the forced options (internally generated Abstract Plan).
Executed in parallel by coordinating process and 4 worker processes.

4 operator(s)

90

under root

Adaptive Server Enterprise

CHAPTER 2 Using showplan

The type of query is SELECT.

ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| EXCHANGE Operator
| Executed in parallel by 4 Producer and 1 Consumer processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| sysmessages

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 4-way hash scan.

| Using I/O Size 4 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

(1 row affected)

There are two plan fragments in this example. The first fragment in any plan,
paralé or not, isawaysrooted by an EMIT operator. Thefirst fragment in this
example consists of the EMIT, SCALAR AGGREGATE, and EXCHANGE
operators. Thisfirst fragment is aways executed by the single Alpha process.
In this example, it also acts as the Beta process responsible for managing the
EXCHANGE operator’s worker processes.

The second plan fragment isrooted at the EXCHANGE:EMIT operator. Itsonly
child operator isthe SCAN operator. The SCAN operator isresponsible for
scanning the sysmessages table. Note that the scan is executed in parallel:

Executed in parallel with a 4-way hash scan

Thisindicatesthat each worker processwill process approximately aquarter of
the table. Pages will be assigned to the worker processes based on having the
datapage ID.

Query Processing and Abstract Plans 91

Instead-of trigger operators

The EXCHANGE:EMIT operator writes datarowsto the consumer(s) by writing
to a pipe created by its parent EXCHANGE operator. In this example, the pipe
is afour-to-one demultiplexer. There are several pipe types that perform quite
different behaviors.

Instead-of trigger operators

There are two operators associated with the instead-of triggers feature. They
arethe INSTEAD-OF TRIGGER operator and the CURSOR SCAN operator. The
instead-of trigger feature uses pseudo tables which allow the user to apply
specific actionsfor inserts, deletes, and updates on viewsthat would otherwise
have been ambiguous.

instead-of trigger operator

The instead-of trigger operator only appearsin query plans for INSERT,
DELETE, or UPDATE statements on a view which has an instead-of trigger
created upon it. Itsfunction isto create and fill the inserted and del eted pseudo
tables that are used in the trigger to examine the rows that would have been
modified by the original INSERT, DELETE, or UPDATE query. The only
purpose of the query plan that contains the INSTEAD-OF TRIGGER operator is
tofill theinserted and deleted tables -- the actual operation of the original SQL
statement (INSERT, DELETE, or UPDATE) is never attempted on the view
referenced inthe statement. Rather, it isup to thetrigger to perform the updates
to the view’'s underlying tables based on the data available in the inserted and
deleted pseudo tables.

The following is an example of the INSTEAD-OF TRIGGER operator’'s
showplan output:

1> create table tl2 (c0 int primary key, cl int null, c2 int null)
1> create view tl2view as select c¢l,c2 from tl12

1> create trigger vl2updtrg on tl2view

2> instead of update as

3> select * from deleted
1> update tl2view set cl = 3

QUERY PLAN FOR STATEMENT 1 (at line 1).

92 Adaptive Server Enterprise

CHAPTER 2 Using showplan

STEP 1

The type of query is SELECT.

2 operator(s) under

t12

|
|
|
| Table Scan.
|
|
|
|

root

ROOT:EMIT Operator

|INSTEAD—OF TRIGGER Operator
| Using Worktablel for internal storage.
| Using Worktable2 for internal storage.

SCAN Operator
FROM TABLE

Forward Scan.

Positioning at start of table.

Using I/0 Size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

In this example, the v12updtrig instead-of trigger is defined on the t12view.
The update to the t12view resultsin the creation of the INSTEAD-OF TRIGGER
operator. The INSTEAD-OF TRIGGER operator creates two worktables.
Worktablel and Worktable2 are used to hold the “inserted” and “ deleted” rows
respectively. These worktables are unique in that they will persist across
statements. Trigger execution results in the following showplan lines getting
printed.

QUERY PLAN FOR STATEMENT 1 (at line 3).

STEP 1

The type of query is SELECT.

1 operator(s) under

| SCAN Operator
| FROM CACHE

root

ROOT:EMIT Operator

The showplan statement output above is for the trigger’s statement “ select *
from deleted”. The rowsto be deleted from the view were inserted into the
“deleted” cache when the initial update statement was executed. Then, the
trigger scans the table to report what rows would have been deleted from the
t12view view.

Query Processing and Abstract Plans 93

Instead-of trigger operators

CURSOR SCAN operator

The CURSOR SCAN operator only appearsin positioned DELETE or UPDATE
(that is, DELETE view-name where current of cursor-name) statementson a
view that has an instead-of trigger created upon it. As such, it only appears as
achild operator of the INSTEAD-OF TRIGGER operator. A positioned DELETE
or UPDATE accesses only the row on which the cursor is currently positioned.
The CURSOR SCAN operator reads the current row of the cursor directly from
the EMIT operator of the query plan for the “fetch cursor” statement. These
values are passed to the INSTEAD-OF TRIGGER operator to beinserted into the
inserted and/or deleted pseudo tables.

1> declare cursl cursor for select * from tl2view

1> open cursl
1> fetch cursl
cl c2

(1 row affected)

1> set showplan on

1> update tl2view set cl = 3
2> where current of cursl

QUERY PLAN FOR STATEMENT (at line 1).

STEP 1
The type of query is SELECT.

2 operator(s) under root
ROOT:EMIT Operator

INSTEAD-OF TRIGGER Operator

| CURSOR SCAN Operator
| FROM EMIT OPERATOR

Using Worktablel for internal storage.
Using Worktable2 for internal storage.

Note that the showplan output in this example isidentical to that from the
previous INSTEAD-OF TRIGGER operator example, with one exception. A
CURSOR SCAN operator appears as the child operator of the INSTEAD-OF
TRIGGER operator rather than a scan of the view’s underlying tables.

94

Adaptive Server Enterprise

CHAPTER 2 Using showplan

The CURSOR SCAN gets the values to be inserted into the pseudo tables by
accessing theresult of the cursor fetch. Thisisconveyed by the*FROM EMIT
OPERATOR” message.

QUERY PLAN FOR STATEMENT 1 (at line 3).

STEP 1
The type of query is SELECT.

1 operator(s) under root
ROOT:EMIT Operator

| SCAN Operator
| FROM CACHE

The showplan statement aboveisfor the trigger’s statement. It isidentical to
the output in the INSTEAD-OF TRIGGER example.

Query Processing and Abstract Plans 95

Instead-of trigger operators

96

Adaptive Server Enterprise

CHAPTER 3

Displaying Query Optimization
Strategies and Estimates

This chapter describes the messages printed by the set commands
designed for query optimization.

Topic Page
set commands for text format messages 97
set commands for XML format messages 98
Usage scenarios 102
Permissions for set commands 105
Tracing commands 105

set commands for text format messages

Either the query optimizer or the query execution layer can generate
diagnostic output. To generate diagnostic output in text format, usethisset
option command:

set option
{ {show | show_lop | show_managers | show_log_props |
show_parallel | show_histograms | show_abstract_plan |
show_search_engine | show_counters | show_best_plan |
show_code_gen | show_pio_costing | show_lio_costing |
show_pll_costing | show_elimination | show_missing_stats}
{normal | brief | long | on | off} }...

Note Each option specified must befollowed by achoice of normal, brief,
long, on, or off. On and normal are equivalent. M ore than one option, and
its corresponding choice, may be specified in a set option command, with
each pair separated by a comma.

Query Processing and Abstract Plans 97

set commands for XML format messages

Table 3-1: Optimizer set commands for text format messages

Option Definition

show Shows areasonable collection of details, where the collection depends on the
choice of {normal | brief | long | on | off}.

show_lop Shows the logical operators used.

show_managers

Shows data structure managers used during optimization.

show_log_props

Shows the logical properties evaluated.

show_parallel

Shows details of parallel query optimization.

show_histograms

Shows the processing of histograms associated with SARG/join columns.

show_abstract_plan

Shows the details of an abstract plan.

show_search_engine

Shows the details of the join-ordering algorithm.

show_counters

Shows the optimization counters.

show_best_plan

Shows the details of the best query plan selected by the optimizer.

show_code_gen

Shows details of code generation.

show_pio_costing

Shows estimates of physical input/output (reads/writes from/to the disk).

show_lio_costing

Shows estimates of logical input/output (reads/writes from/to memory).

show_pll_costing

Shows estimates relating to costing for parallel execution.

show_elimination

Shows partition elimination.

show_missing_stats

Shows details of useful statistics missing from SARG/join columns.

set commands for XML format messages

98

Diagnostics have been enhanced so that they can be sent out asan XML
document. Thismakesit easier for front-end toolsto interpret adocument. You
can use the native XPath query processor inside Adaptive Server to query this
output if the XML option is enabled.

Either the query optimizer or the query execution layer can generate
diagnostics output. To generate an XML document for the diagnostic output,
use this set plan command:

set plan for
{show_exec_xml, show_opt_xml, show_execio_xml,
show_lop_xml, show_managers_xml, show_log_props_xml,
show_parallel_xml, show_histograms_xml, show_final_plan_xml,
show_abstract_plan_xml, show_search_engine_xml,
show_counters_xml, show_best_plan_xml, show_pio_costing_xml,
show_lio_costing_xml, show_elimination_xml}
to {client | message} on

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

Option

Definition

show_exec_xml

Gets the compiled plan output in XML, showing each of the query plan operators.

show_opt_xml

Gets optimizer diagnostic output, which shows the different components such as
logical operators, output from the managers, some of the search engine diagnostics,
and the best query plan.

show_execio_xml

Gets the plan output along with estimated and actual 10s. show_execio_xml aso
includes the query text.

show_lop_xml

Gets the output logical operator treein XML.

show_managers_xml

Shows the output of the different component managers during the preparation phase
of the query optimizer.

show_log_props_xml

Showsthe logical properties for a given equivalence class (one or more group of
relations in the query).

show_parallel_xml

Shows the diagnostics related to the optimizer while generating parallel query plans.

show_histograms_xml

Shows diagnostics related to histograms and the merging of histograms.

show_final_plan_xml

Gets the plan output. Does not include the estimated and actual 1/Os.
show_final_plan_xml includes the query text.

show_abstract_plan_xml

Shows the generated abstract plan.

show_search_engine_xml

Shows diagnostics related to the search engine.

show_counters_xml

Shows plan object construction/destruction counters.

show_best_plan_xml

Shows the best plan in XML.

show_pio_costing_xml

Shows actual physical input/output costing in XML.

show_lio_costing_xml

Shows actual logical input/output costing in XML.

show_elimination_xml

Shows partition elimination in XML.

client When specified, output is sent to the client. By default, thisis understood to mean the
error log. When traceflag 3604 is active, however, output is sent to the client
connection.

message When specified, output is sent to an internal message buffer.

To turn an option off, specify:

set plan for
{show_exec_xml, show_opt_xml, show_execio_xml, show_lop_xml,
show_managers_xml, show_log_props_xml, show_parallel_xml,
show_histograms_xml,show_final_plan_xml
show_abstract_plan_xml, show_search_engine_xml,
show_counters_xml, show_best_plan_xml, show_pio_costing_xml,
show_lio_costing_xml, show_elimination_xml} off

You need not specify the destination stream when turning the option off.

When message is specified, the client application must get the diagnostics
from the buffer using a built-in function called showplan_in_xmi(query_num).

Query Processing and Abstract Plans 99

set commands for XML format messages

query_num refers to the number of queries that are cached in the buffer.
Currently, amaximum of 20 queries are cached in the buffer. The cache stops
collecting query plans when it reaches 20 queries; it ignores the rest of the
query plans. However, the message buffer continues to collect query plans.
After 20 queries, you can only display the message buffer in its entirety by
using avalue of 0.

A value of -1 refersto thelast XML doc in the cache; avalue of O refersto the
entire message buffer. This means that the legal values for query_num are not
only 1 through 20, but also include -1 and 0.

The message buffer may overflow. If this occurs, thereis no way to log all of
the XML document, which may result in apartial and invalid XML document.

When the message buffer is accessed using showplan_in_xml, the buffer is
emptied after execution.

You may want to use set textsize to set the maximum text size, as the XML
document is printed as a text column and the document is truncated if the
column is not large enough. For example, set the text size to 100000 bytes
using:

set textsize 100000

When set plan isissued with off, all XML tracing isturned off if all of the trace
options have been turned off. Otherwise, only specified options are turned off.
Other options previously turned on are still valid and tracing continues on the
specified destination stream. When you issue another set plan option, the
previous options are joined with the current options, but the destination stream
is switched unconditionally to a new one.

Using show_execio_xml to diagnose query plans

100

show_execio_xml includes diagnostic information that can be helpful for
investigating problematic queries. Theinformation show_execio_xml displays
includes:

» Theversion level of the query plan. Each version of the plan is uniquely
identified. Thisisthefirst version of the plan:

<planVersion>1l.0</planVersions>

e The statement number in a batch or stored procedure, along with the line
number of the statement in the original text. Thisis statement number 2,
but line number 6, in the query:

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

<statementNum>2</statementNum>
<lineNum>6</1lineNum>

e Theabstract plan for the query. For example, thisis the abstract plan for
the query select * from titles:

<abstractPlan>
<! [CDATA[>
(1 scan titleidind titles) (prop titles (parallel 1
) (prefetch 8) (lru))
11>

</abstractPlans>
e Thelogical 10, physical 10, and CPU costs:

<costs>
<lio> 2 </lio>
<pio> 2 </pio>
<cpu> 18 </cpu>
</costs>

You can estimate the total costs with this formula:
25X pio+2 X lio+0.1 X cpu

* The estimated execution resource usage, including the number of threads
and auxiliary scan descriptors used by the query plan.

* Thenumber of plansthe query engine viewed and the plansit determined
were valid, the total time spent in the query engine (in milliseconds), the
time it took to determinethe first legal plan, and the amount of procedure
cache used during the optimization process.

<optimizerMetricss>
<optTimeMs>6</optTimeMs>
<optTimeToFirstPlanMs>3</optTimeToFirstPlanMs>
<plansEvaluated>l</plansEvaluateds>
<plansValid>l</plansvValids>
<procCacheBytes>140231</procCacheBytes>
</optimizerMetrics>

e Thelast time update statistics was run on the current table and whether the
query engine used a hard-wired estimation constant for a given column
that it could have estimated better if statistics were available. This section
includes information about columns with missing statistics:

<optimizerStatistics>
<statInfo>
<objName>titles</objName>
<columnStats>

Query Processing and Abstract Plans 101

Usage scenarios

<column>title id</column>
<updateTime>Oct 5 2006 4:40:14:730PM</updateTime>
</columnStatss>
<columnStats>
<column>title</column>
<updateTime>Oct 5 2006 4:40:14:730PM</updateTime>
</columnStatss>
</statInfo>
</optimizerStatisticss>

» Anoperator tree that includes table and index scans with information
about cache strategies and 10 sizes (inserts, updates, and deletes have the
same information for the target table). The operator tree also shows
whether updates are performed in “direct” or “deferred” mode. The
exchange operator includesinformation about the number of producer and
consumer processes the query used.

<TableScans>
<VA>0</VA>
<est>
<rowCnt>18</rowCnt>
<lio>2</lio>
<pio>2</pio>
<rowSz>218.5555</rowSz>
</est>
<varNo>0</varNo>
<objName>titles</objName>
<scanType>TableScan</scanType>
<partitionInfo>
<partitionCount>l</partitionCounts>
</partitionInfo>
<scanOrder> ForwardScan </scanOrder>
<positioning> StartOfTable </positionings>
<dataIOSizeInKB>8</dataIOSizeInKB>
<dataBufReplStrategy> LRU </dataBufReplStrategy>
</TableScan>

Usage scenarios

Scenario A To send the execution plan XML to the client as trace output, use:
set plan for show_exec_xml to client on

Then run the queries for which the plan is wanted:

102 Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

Scenario B

Scenario C

Scenario D

select id from sysindexes where id < 0

If dbcc traceon(3604) is set, trace information goesto the client’s connection. I
dbcc traceon (3605) is set, trace information goes to the error log.

To get the execution plan, use the showplan_in_xml built-in. You can get the
output from the last query, or from any of the first 20 queriesin abatch or
stored procedure.

set plan for show _opt xml to message on
Run the query as:

select id from sysindexes where id < 0
select name from sysobjects where id > 0

go
select showplan in xml (0)
go

The example generates two XML documents as text streams. You can run an
XPath query over this built-in aslong asthe XML optionisenabled in
Adaptive Server.

select xmlextract("/", showplan in xml(-1))
go

This allows the XPath query “/” to be run over the XML doc produced by the
last query.
To set multiple options:
set plan for show _exec_xml, show opt xml to client on
go
select name from sysobjects where id > 0
go

This sets up the output from the optimizer and the query execution engine to
send the result to the client, asis donein normal tracing.

set plan for show_exec_xml off

go
select name from sysobjects where id > 0

go
The optimizer’s diagnostics are still available, as show_opt_xml is|eft on.

When running a set of queriesin abatch, you can ask for the optimizer plan for
the last query.

set plan for show _opt xml to message on

Query Processing and Abstract Plans 103

Usage scenarios

Scenario E

104

go
declare @v int
select @v = 1
select name from sysobjects where id = @v

go

select showplan in xml (-1)

go
showplan_in_xml() can a so be part of the same batch asit worksthe same way.
Any message for the showplan_in_xml() built-in isignored for logging.

To create a stored procedure:

create proc PP as

declare @v int

select @v = 1

select name from sysobjects where id = @v

go

exec P
go

select showplan in xml (-1)

go
If the stored procedure calls another stored procedure, and the called stored
procedure compiles, and optimizer diagnostics are turned on, you get the

optimizer diagnostics for the new set of statementsaswell. The sameistrueif
show_execio_xml isturned on and only the called stored procedure is executed.

To query the output of the showplan_in_xml() for the query execution plan,
whichisan XML doc:

set plan for show _exec xml to message on
go

select name from sysobjects
go

select case when
'/Emit/Scan[@Label="Scan:myobjectss”]' xmltest
showplan in xml (-1)

then “PASSED” elge "FAILED" end

go

set plan for show exec xml off
go

Adaptive Server Enterprise

CHAPTER 3 Displaying Query Optimization Strategies and Estimates

Scenario F Use show_final_plan_xml to configure Adaptive Server to display the query
plan as XML output. This output does not include the actual L10O costs, PIO
costs, or the row counts. Once show_final_plan_xml is enabled, you can select
the query plan from the last run query (which is query ID of -1). To enable
show_final_plan_xml:

set plan for show final plan xml to message on
Run your query, for example:

use pubs2

go

select * from titles
go

Select the query plan for the last query run using the showplan_in_xml
parameter:

select showplan in xml (-1)

Permissions for set commands

The sa_role has full accessto the set commands described above.

For other users, new set tracing permissions must be granted and revoked by
the System Administrator to allow set option and set plan for XML, aswell as
dbcc traceon/off (3604,3605).

For more information, see the grant command description in Adaptive Server
Reference Manual: Commands.

Tracing commands

Optimization tracing options (dbcc traceon/off(302,310,317)) from versions of
Adaptive Server earlier than 15.0 are no longer supported.

dbcc traceon(3604) can be used to direct trace output to the client process that
would otherwise go to the error log. dbcc traceon(3605) can be used to direct
output to the error log as well as to the client process.

Query Processing and Abstract Plans 105

Tracing commands

106 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Thischapter provides an in-depth description of parallel query processing.

Topic Page
Vertical, horizontal, and pipelined parallelism 107
Queriesthat benefit from parallel processing 108
Enabling parallelism 109
Controlling parallelism at the session level 113
Controlling query parallelism 114
Using parallelism selectively 115
Using parallelism with large numbers of partitions 116
When parallel query results differ 118
Understanding parallel query plans 119
Adaptive Server parald query execution model 122

Vertical, horizontal, and pipelined parallelism

Adaptive Server supports horizontal and vertical parallelism for query
execution. Vertical parallelism isthe ability to run multiple operators at
the same time by employing different system resources such as CPUSs,
disks, and so on. Horizontal parallelism is the ability to run multiple
instances of an operator on the specified portion of the data.

The way you partition your data greatly affects how well horizontal
parallelismworks. Thelogical partitioning of dataisuseful in operational
decision-support systems (DSS) queries where large volumes of data are
being processed.

See Chapter 10, “Partitioning Tables and Indexes,” in the Transact-SQL
User’s Guide and the section titled “ Partitioning Tables for Performance”
in Chapter 6, “ Controlling Physical Data Placement,” of the Performance
and Tuning: Basicsguide for amore detailed discussion of partitioning on
Adaptive Server. Understanding different types of partitioning is a
prerequisite to understanding this chapter.

Query Processing and Abstract Plans 107

Queries that benefit from parallel processing

Adaptive Server also supports pipelined parallelism. Pipelining is aform of
vertical parallelismin which intermediate results are piped to higher operators
inaquery tree. The output of one operator isused asinput for another operator.
The operator used as input can run at the same time as the operator feeding the
data, which is an essential element in pipelined parallelism. Use parallelism
only when multiple resources like disks and CPUs are available. Using
parallelism can be detrimental if your system is not configured for resources
that can work in tandem. In addition, data must be spread across disk resources
inaway that closely ties the logical partitioning of the data with the physical
partitioning on parallel devices. The biggest challenge for aparalld systemis
to control the correct granularity of parallelism. If parallelism istoo finely
grained, communication and synchronization overhead can offset any benefit
that is obtained from parallel operations. Making parallelism too coarse does
not permit proper scaling.

Queries that benefit from parallel processing

108

When Adaptive Server is configured for parallel query processing, the query
optimizer evaluates each query to determine whether it is eligible for parallel
execution. If itiseligible, and if the optimizer determinesthat aparallel query
plan can deliver results faster than a serial plan, the query is divided into plan
fragments that are processed simultaneously. The results are combined and
delivered to the client in a shorter period of time than it would take to process
the query serially as a single fragment.

Parallel query processing can improve the performance of:

» select statementsthat scan large numbersof pagesbut return relatively few
rows, such as table scans or clustered index scans with grouped or
ungrouped aggregates.

» Tablescansor clustered index scansthat scan alarge number of pages, but
have where clauses that return only asmall percentage of rows.

» select statements that include union, order by, or distinct, Since these query
operations can make use of parallel sorting or parallel hashing.

» select statementswhere areformatting strategy is chosen by the optimizer,
since these can popul ate worktables in parallel and can make use of
parallel sorting.

* join queries.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Commands that return large, unsorted result sets are unlikely to benefit from
parallel processing due to network constraints. In most cases, results can be
returned from the database faster than they can be merged and returned to the
client over the network.

Parallel DMLs like insert, delete, and update are not supported and so do not
benefit from parallelism.

Enabling parallelism

To configure Adaptive Server for parallelism, you must enable the number of
worker processes and max parallel degree parameters.

To gain optimal performance, you must be aware of other configuration
parameters that affect the quality of plans generated by Adaptive Server.

Setting the number of worker processes

Before you enable parallelism, you must first configure the number of worker
processes (also referred to as threads) available for Adaptive Server by setting
the configuration parameter number of worker processes. Make sure you
configure a sufficient number of worker processes. Sybase recommends that
you set the value for number of worker processes to one and a half times the
total number required at peak load. You can calculate an approximate number
using the max parallel degree configuration parameter, which indicatesthetotal
number of worker processes that can be used for any query. Depending on the
number of connections to the Adaptive Server and the approximate number of
gueries that are run simultaneously, you can use this rule to roughly estimate
the value for the number of worker processes that may be needed at any time:

[number of worker processes] = [max parallel degree] X [the number of
concurrent connections wanting to run queriesin parallel] x [1.5]

If the query processor hasinsufficient worker processes, the processor triesto
adjust the query plan during runtime. If aminimal number of worker processes
are required but unavailable, the query aborts with this error message:

Insufficient number of worker processes to execute the
parallel query. Increase the value of the configuration
parameter ‘number of worker processes’

Query Processing and Abstract Plans 109

Enabling parallelism

To set the number of worker processesto 40:
sp_configure "number of worker processes", 40

Any runtime adjustment for the number of threads may have a negative effect
on query performance. Adaptive Server always triesto optimize thread usage,
but it may have already committed to aplan that needsincreased resources, and
therefore does not guarantee a linear scaledown when it runs with fewer
threads.

Setting max parallel degree

Usethemax parallel degree configuration parameter to configure the maximum
amount of parallelism for a query. This parameter determines the maximum
number of threads Adaptive Server uses when processing a given query. For
example, to set max parallel degree to 10, enter:

sp_configure "max parallel degree", 10

Unlike versions of Adaptive Server earlier than 15.0, this parameter’svalueis
not entirely enforced by the query optimizer. A complete enforcement process
isexpensivein terms of optimization time. Adaptive Server comes closeto the
desired setting of max parallel degree and exceedsit only for semantic reasons.

Setting max resource granularity

The value of max resource granularity configures the maximum percentage of
system resources aquery can use. As of version 15.0, max resource granularity
affects only procedure cache. This parameter is set to 10% by default.
However, it is not enforced at execution time; it is only aguide for the query
optimizer. The query engine can avoid memory-intensive strategies, such as
hash-based al gorithms, when max resource granularity is set to alow value.

To set max resource granularity to 5%, enter:

sp_configure "max resource granularity", 5

110 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Setting max repartition degree

Adaptive Server must dynamically repartition intermediate data to match the
partitioning scheme of another operand or to perform an efficient partition
elimination. The configuration parameter max repartition degree controls the
amount of dynamic repartitioning Adaptive Server can do. If the value of max
repartition degree istoo high, the number of intermediate partitions becomes
too large and the system becomes flooded with worker processesthat compete
for resources, which eventually degrades performance. The value for max
repartition degree enforces the maximum number of partitions created for any
intermediate data. Repartitioning is a CPU-intensive operation. The value of
max repartition degree should not exceed the total number of Adaptive Server
engines.

If al tables and indexes are unpartitioned, Adaptive Server uses the value for
max repartition degree to provide the number of partitionsto create as a result
of repartitioning the data. When the valueis set to 1, which isthe default case,
the value of max repartition degree is set to the number of online engines.

Use max repartition degree when using the force option to perform a parallel
scan on atable or index.

select * from customers (parallel)

For example, if the customers tableisunpartitioned and the force optionisused,
Adaptive Serve tries to find the inherent partitioning degree of that table or
index, which in thiscaseis 1. It uses the number of engines configured for the
server, or whatever degreeis best based on the number of pagesin thetable or
index that does not exceed the value of max repartition degree.

To set max repartition degree to 5:

sp_configure "max repartition degree", 5

Setting max scan parallel degree

The max scan parallel degree configuration parameter is used only for
backward compatibility, when the datain a partitioned table or index is highly
skewed. If the value of this parameter is greater than 1, Adaptive Server uses
thisvalueto do ahash-based scan. The value of max scan parallel degree cannot
exceed the value of max parallel degree.

Query Processing and Abstract Plans 111

Enabling parallelism

Setting prod-consumer overlap factor

This parameter affects how much pipelined parallelism can be created in a
query plan. The default value is 20%, which means that if two operatorsin a
parent-child relationship are run by separate worker processes, thereisa 20%
overlap. Theremaining 80% of the operation issequential. Thisaffectstheway
inwhich Adaptive Server costs two plan fragments. Consider the example of a
scan operator under a grouping operation. In such acase, if the scan operator
takes N1 seconds and grouping operations take N2 seconds, the response time
of the two operatorsis:

0.2 * max (N1, N2) + 0.8 * (N1 + N2)

In setting this parameter, consider the number of online engines on which
Adaptive Server is running and the complexity of the queriesto berun. Asa
general rule, use thread resources to scan on multiple partitions first. Then, if
there are unused thread resources, use them to speed up vertical pipelined
parallelism. Do not exceed a value of 50.

Setting min pages for parallel scan

This parameter controls which tables and indices may be accessed in parallel.
If the number of pagesin atableisbelow this value, the table is accessed
serialy. The default value is 200 pages; page size is not relevant. Although the
tables and indices of the table are accessed serialy, Adaptive Server triesto
repartition the data, if that is appropriate, and to use parallelism above the
scans, if that is appropriate.

Setting max query parallel degree

112

This parameter does what max parallel degree otherwise does for a query; that
is, it defines the number of worker processes to use for a given query. This
parameter is relevant only if you do not want to enable parallelism globally.
You must configure the number of worker processes to a value greater than
zero, but max query parallel degree must be set to 1.

When max query parallel degree is set to avalue greater than 1, queries are not
compiled to use parallelism. Instead, it allows you to specify parallel hints,
using Abstract Plans to compile one or more queries using parallelism.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Use use parallel N to define how much parallelism isto be used for agiven
query. Alternatively, use create plan to specify the query and the number of
worker processes to use for it.

Controlling parallelism at the session level

The set options |et you restrict the degree of parallelism on a session basis, in
stored procedures, or in triggers. These options are useful for tuning
experiments with parallel queries and can also be used to restrict noncritical
queriesto runin serial, so that worker processes remain available for other
tasks. The set options are summarized in the following table.

Table 4-1: Session-level parallelism control parameters

Parameter Function

parallel_degree Sets the maximum number of worker processesfor aquery
inasession, stored procedure, or trigger. Overridesthe max

parallel degree configuration parameter, but must be less
than or equa to the value of max parallel degree.

scan_parallel_degree | Setsthe maximum number of worker processes for a
hash-based scan during a specific session, stored
procedure, or trigger. Overrides the max scan parallel
degree configuration parameter and must be less than or
equal to the value of max scan parallel degree.

resource_granularity Overrides the global value max resource granularity and
setsit to a session specific va ue, which influences whether
Adaptive Server uses memory-intensive operations.

repartition_degree Sets the value of max repartition degree for asession. This
is the maximum degree to which any intermediate data
stream will be repartitioned for semantic purposes.

If you specify avalue that istoo large for any of the set options, the value of
the corresponding configuration parameter is used, and a message reports the
valuethat isin effect. While set parallel_degree, set scan_parallel_degree, set
repartition_degree, Or set resource_granularity isin effect during a session, the
plansfor any stored proceduresthat you execute are not placed in the procedure
cache. Procedures executed with these set options in effect may produce less
than optimal plans.

Query Processing and Abstract Plans 113

Controlling query parallelism

set command examples

This examplerestricts all queries started in the current session to 5 worker
processes:

set parallel degree 5

While this command isin effect, any query on atable with more than 5
partitions cannot use a partition-based scan.

To remove the session limit, use:
set parallel degree 0
or
set scan parallel degree 0
To run subsequent queriesin serial mode, use:
set parallel degree 1
or
set scan parallel degree 1

To set resource granularity to 25% of the total resources available in the
system, use:

set resource granularity 25

The sameistrue for repartition degree as well; you can set it to avalue of 5. It
cannot, however, exceed the value of max parallel degree.

set repartition degree 5

Controlling query parallelism

The parallel extension to the from clause of a select command allows users to
suggest the number of worker processes used in a select statement. The degree
of parallelism that you specify cannot be more than the value set with
sp_configure or the session limit controlled by aset command. If you specify a
higher value, the specification is ignored, and the optimizer uses the set or
sp_configure limit.

The syntax for the select statement is:

select ...

114 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

from tablename [([index index_name]
[parallel [degree_of parallelism | 1]]
[prefetch size] [Irujmru])],
tablename [([index index_name]
[parallel [degree_of_parallelism | 1]
[prefetch size] [lrujmru])] ...

Query-level parallel clause examples

To specify the degree of parallelism for asingle query, include paraliel after
the table name. This example executes in serial:

select * from huge table (parallel 1)

This example specifies the index to use in the query, and sets the degree of
paralelismto 2:

select * from huge table (index ncix parallel 2)

Using parallelism selectively

Not al queries benefit from parallelism. In general, the optimizer determines
which queries will not benefit from parallelism and attempts to run them
serially. When the query processor makes errorsin such cases, it isusually
because of skewed statistics or incorrect costing as a result of imperfect
modeling. Experience will show you whether queries are running better or
worse, and you can decide to keep parallel on or off.

If you choose to keep parallel on, and have identified the queries you want to
run in serial mode, you can attach an abstract plan hint, as follows:

select count (*) from sysobjects
plan “(use parallel 1)”

The same effect is achieved by creating a query plan:

create plan “select count (*) from sysobjects”
“use parallel 1”

If, on the other hand, you notice that parallelism isresource-intensive or that it
does not generate query plans that perform well, use it selectively. To enable
parallelism for selected complex queries:

Query Processing and Abstract Plans 115

Using parallelism with large numbers of partitions

1 Set the number of worker processes to a number greater than zero, based
on the guidelines in “ Setting the number of worker processes’ on page
109. For example, to configure 10 worker processes, execute:

sp_configure “number of worker processes”, 10

2 Then set max query parallel degree to avalue greater than 1. As a starting
point, you could set it to what you would have used for max parallel degree:

sp_configure “max query parallel degree”, 10

3 Thepreferred way to force aquery to use a paralel planisto usethe
abstract plan syntax

use parallel N
where N is less than the value of max query parallel degree.
To write a query that uses a maximum of 5 threads, use:

select count (*), S1.id from sysobjects S1, sysindexes S2
where S1.id = S2.id

group by S1.id

plan

“(use parallel 5)”

This query tellsthe optimizer to use 5 worker processes, if it can. the only
drawback to this approach isthat the actual queriesin the application must
be altered. To avoid this, use create plan:

create plan

“select count(*), Sl.id from sysobjects S1, sysindexes S2
where S1.id = S2.id

group by S1.id”

“(use parallel 5)”

Use this command to turn the abstract plan load option on globally:
sp_configure “abstract plan load”, 1

See Chapter 8, “ Creating and Using Abstract Plans,” for moreinformation
about using abstract plans.

Using parallelism with large numbers of partitions

116

Theinformation in this section also applieswhen partitioning is configured for
manageability, and in a situation where partitions are created on physical or
logical devicesthat exhibit little or no parallelism.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

For the purposes of this discussion, you have decided to partition atable using
range partitioning that represents each week of ayear. Theissue hereisthat the
query optimizer does not know how the underlying disk system will respond to
a52-way parallel scan. The optimizer needs to figure out the best way to scan
the table. If there are enough worker processes configured, the optimizer will
use 52 threads to scan the table, which may well cause serious performance
issues and be even slower than a seria scan.

To prevent this, first find out exactly how much parallelismis supported. If you
know the devices that are used for thistable, you can use the following
command on a UNIX system, where the underlying device is called /dev/xx:

time dd if=/dev/xx of=/dev/null bs=2k skip=8 count = 102400 &
Assume that time records as x.
Now run two of the same commands concurrently:

time dd if=/dev/xx of=/dev/null bs=2k skip=8 count = 102400 &
time dd if=/dev/xx of=/dev/null bs=2k skip=8 count = 102400 &

Thistime, assumethat timeisy. In alinear scale-up, x isthe same asy, which
is probably impossible to achieve. The following identity may suffice:
X <=y <= (N*x)/k

Where N isthe number of simultaneous sessions started and k is a constant that
identifies an acceptable improvement level. A good approximation of k might
be 1.4, which saysthat parallel scanisallowed aslong asit delivers 40% better
metrics than a serial scan.

Table 4-2: Parallel scan metrics

Number of threads | Perf metrics | Acceptable for k=1.4

1 200s

2 245s 245 <= (200*2)/1.4; i.e. 245<=285.71
4 560s 560 <= (200*4)/1.4; i.e. 560<=571.42
5 725s 725 <= (200*5)/1.4; i.e. 725<=714.28

Table 4-2 shows that the disk subsystem did not perform well after four
concurrent access; the performance numbers went below the acceptable limit
established by k. In general, read enough data blocks to allow for any skewed
readings.

Having established that 4 threads is optimal, provide this hint by binding it to
the object using sp_chgattribute in this way:

sp_chgattribute <tablename>, “plidegree”, 4

Query Processing and Abstract Plans 117

When parallel query results differ

When parallel

118

Thistells the query optimizer to use a maximum of 4 threads. It may choose
less than four threads if it does not find enough resources. The same
mechanism can be applied to an index. For example, if anindex called auth_ind
exists on authors and you want to use two threads to accessit, use this
command:

sp_chgattribute “authors.auth_ind”, “plidegree”, 4

You must run sp_chgatttribute from the current database.

query results differ

When aquery does not include scalar aggregates or require afinal sorting step,
aparallel query might return resultsin a different order from the same query
runin serial, and subsequent executions of the same query in parallel might
return results in different orders. The relative speed of the different worker
processes|eadsto differencesin result-set ordering. Each parallel scan behaves
differently, dueto pagesalready in cache, lock contention, and soforth. Parallel
queries always return the same set of results, just not in the same order. If you
need a dependable ordering of results, use order by or run the query in seria
mode.

In addition, dueto the pacing effects of multiple worker processes reading data
pages, two types of queries accessing the same datamay return different results
when an aggregate or afinal sort is not done. They are:

e Queriesthat use set rowcount

* Queriesthat select acolumninto alocal variable without sufficiently
restrictive query clauses

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Queries that use set rowcount

The set rowcount option stops processing from continuing after a certain
number of rowsare returned to the client. With serial processing, theresultsare
consistent in repeated executions as long as the query plans are the same. In
serial mode, given the same query plan, the samerows arereturned in the same
order for agiven rowcount value, because a single process reads the data pages
in the same order every time. With parallel queries, the order of the resultsand
the set of rowsreturned can differ, because worker processes may access pages
sooner or later than other processes. To get consistent results, you must either
use a clause that performs afinal sort step or run the query in serial.

Queries that set local variables
This query setsthe value of alocal variable in a select statement:

select @tid = title id from titles
where type = "business"

Thewhere clause matches multiple rowsin thetitles table, so thelocal variable
isalways set to the value from the last matching row returned by the query. The
valueisawaysthe samein serial processing, but for parallel query processing,
the results depend on which worker process finisheslast. To achieve a
consistent result, use a clause that performs afinal sort step, execute the query
in serial mode, or add clauses so that the query arguments select only single
rows.

Understanding parallel query plans

The key to understanding parallel query processing in Adaptive Server isto
understand the basic building blocksin a parallel query plan.

Note SeeChapter 2, “Using showplan,” which explainshow to display aquery
plan in atext-based format for each SQL statement in a batch or stored
procedure.

Query Processing and Abstract Plans 119

Understanding parallel query plans

120

A compiled query plan contains atree of execution operators that closely
resembl es the relational semantics of the query. Each query operator
implements arelational operation using a specific algorithm. For example, a
query operator called nested-loop join implements the relational join operation.
In Adaptive Server, the primary operator for parallelism is the exchange
operator. It isacontrol operator and does not implement any relational
operation. The purpose of an exchange operator isto create new worker
processes that can handle a fragment of the data. During optimization,
Adaptive Server strategically places the exchange operator to create operator
tree fragmentsthat can runin parallel. All operatorsfound below the exchange
operator (down to the next exchange operator) are executed by worker threads
that clone the fragment of the operator tree to produce datain parallel. The
exchange operator can then redistribute this data to the parent operator above
itinthequery plan. Theexchange operator handlesthe pipelining and rerouting
of data.

In the following sections, the word degree is used in two different contexts.
When “degree N” of atable or index isreferred to, it references the number of
partitions contained in atable or index. When the “ degree of an operation” or
“the degree of a configuration parameter” is referred to, it references the
number of partitions generated in the intermediate data stream.

The following example shows how operators in the query processor work in
seria with the following query run in the pubs2 database. The tabletitles is
hash-partitioned three ways on the column pub_id.

select * from titles
QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

| SCAN Operator
| FROM TABLE
| titles

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
pages.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Asthis exampleillustrates, thetitles table is being scanned by the scan
operator, the details of which can be seen in the showplan output. The emit
operator reads the data from the scan operator and sendsiit to the client
application. A given query can create an arbitrarily complex tree of such
operators.

When parallelism turned on, Adaptive Server can perform asimple scanin
parallel using the exchange operator above the scan operator. exchange
produces three worker processes (based on the three partitions), each of which
scans the three disjointed parts of the table and sends the output to the
consumer process. The emit operator at the top of the tree does not know that
the scans are donein parallel.

Example A:

select * from titles

Executed in parallel by coordinating process and 3 worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
| Executed in parallel by 3 Producer and 1 Consumer processes.

EXCHANGE :EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| titles

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 3-way partition scan.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

Note the presence of an operator called Exchange:Emit. Thisisan operator that
isplaced under an Exchange operator to funnel data. The exchange operator is
described in detail in “exchange operator” on page 122.

Query Processing and Abstract Plans 121

Adaptive Server parallel query execution model

Adaptive Server parallel query execution model

One of the key components of the parallel query execution model isthe
exchange operator. You can see it in the showplan output of a query.

exchange operator

The exchange operator marks the boundary between a producer and a
consumer operator (the operators below the exchange operator produce data
and those above it consume data). In an earlier example (Example A) that
showed parallel scan of thetitlestable (select * from titles), the
exchange:emit and the scan operator produce data. Thisis shown briefly.

select * from titles
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer and 1 Consumer
processes.

EXCHANGE :EMIT Operator
RESTRICT Operator

| SCAN Operator
| FROM TABLE

| titles

| Table Scan.

In this example, one consumer process reads data from a pipe (which is used
as amedium to transfer data across process boundaries) and hands it off to the
emit operator, which in turn routes the result to the client. The exchange
operator also spawnsworker processes, which are called producer threads. The
exchange:emit operator is responsible for writing the data into a pipe managed
by the exchange operator.

122 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Process houndary 1

Pipe management

Many-to-one

Figure 4-1: Binding of thread to plan fragments in query plan

EMIT ACD“SU“’IET process

EXCHANGE (3 to 1)

Three producer
processes

EXCHANGE:EMIT

yo

Figure 4-1 shows the process boundary between a producer and a consumer
task. There are two plan fragmentsin this query plan. The plan fragment with
the scan and the exchange:emit operators are being cloned three ways and then
athree-to-one exchange operator writesit into apipe. The emit operator and the
exchange operator are run by a single process, which meansthereisasingle
clone of that plan fragment.

Thefour types of pipes managed by the exchange operator are distinguished by
how they split and merge data streams. You can determine which type of pipe
is being managed by the exchange operator by looking at its description in the
showplan output, where the number of producers and consumers are shown.
The four pipe types are described below.

Inthis case, the exchange operator spawns multiple producer threads and has
one consumer task that reads the data from a pipe, to which multiple producer
threads write. The exchange operator in the previous example implements a
many-to-one exchange. A many-to-one exchange operator can be
order-preserving and this technique is employed particularly when doing a
paralléel sort for an order by clause and the resultant data stream merged to
generate the final ordering. The showplan output shows more than one
producer process and one consumer process.

| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer and 1
Consumer processes

Query Processing and Abstract Plans 123

Adaptive Server parallel query execution model

One-to-many

Many-to-many

Replicated exchange
operators

Inthiscase, thereisone producer and multiple consumer threads. The producer
thread writes data to multipl e pipes according to a partitioning scheme devised
at query optimization and then routes data to each of these pipes. Each
consumer thread reads data from one of the assigned pipes. This kind of data
split can preserve the ordering of the data. The showplan output shows one
producer process and more than one consumer processes.

Many-to-many means that there are multiple producers and multiple
consumers. Each producer writes to multiple pipes, and each pipe has multiple
consumers. Each stream is written to a pipe. Each consumer thread reads data
from one of the assigned pipes.

| EXCHANGE Operator (Repartitioned)
|Executed in parallel by 3 Producer and 4
Consumer processes

In this case, the producer thread writes al of its data to each pipe that the
exchange operator configures. The producer thread makes a number of copies
of the source data (the number is specified by the query optimizer) equal to the
number of pipesin the exchange operator. Each consumer thread reads data
from one of the assigned pipes. The showplan output shows this as follows:

| EXCHANGE (Replicated)
|Executed in parallel by 3 Producers and 4
Consumer processes

Worker process model

124

A parallel query planiscomposed of different operators, at least one of which
is an exchange operator. At runtime, a parallel query plan is bound to a set of
server processesthat will, together, execute the query planin aparallel fashion.

The server process associated with the user connection is called the alpha
process because it is the source process from which parallel execution is
initiated. In particular, each worker process involved in the execution of the
parallel query plan is spawned by the alpha process.

In addition to spawning worker processes, the alpha processinitializes all the
worker processes involved in the execution of the plan, and creates and
destroys the pipes necessary for worker processes to exchange data. The alpha
processis, in effect, the global coordinator for the execution of aparallel query
plan.

At runtime, Adaptive Server associ ates each exchange operator inthe plan with
aset of worker processes. The worker processes execute the query plan
fragment located immediately bel ow the exchange operator.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

For the query in Example A, represented in “ exchange operator” on page 122,
the exchange operator is associated with three worker processes. Each worker
process executes the plan fragment made of the exchange:emit operator and of
the scan operator.

Figure 4-2: Query execution plan with one exchange operator

/ﬂ.lpha process =
EMIT - heta process
EXCHANGE (3 to 1)

T
EXCHANGE:EMIT

yo

Process houndary

Three worker "

&
processes ‘I—T

titles (3 partitions)

Each exchange operator isalso associated with aserver process named the beta
process, which can be either the alpha process or aworker process. The beta
process associated with a given exchange operator isthelocal coordinator for
the execution of the plan fragment bel ow the exchange operator. Intheexample
above, the beta process is the same process as the alpha process, because the
plan to be executed has only one level of exchange operators.

Next, use this query to illustrate what happens when the query plan contains
multiple exchange operators.

select count (*),pub_id, pub date
from titles
group by pub id, pub date

Query Processing and Abstract Plans 125

Adaptive Server parallel query execution model

Figure 4-3: Query execution plan with two exchange operators

EOCTEMIT Cpemator
|EXCHANGE Opemior e
[Esecuisd in parallel by tea) Alpha
| 2 Producer and | Consumer processas. FIOCEEES
|
| |EXCHANGE:EMIT Cperator
|| Kehe-1(2 to Two worker
| | HASH YVECTOR AGGREGATE e . Tt?i‘jm
Orpernto " (T4,T3)
| | GROUPBY o = ® TaBets
| [EXCHANGE Opentr FmitXchg

| |

| | | [Executed n paralle] by "‘._
| 1| | 7 Producer and 2 Conzumer =,
PO

processes. .~

Haﬂuf‘-r_un'_lri:lg £|
i x
’ Xeheg-2(3to

:l saassrasnn]

|
|SCAN Cpemiar ¥

[EXCHANGE:EMIT Cper tor "

[111

[111

nn

[1111 |FROMTABLE - [¥l

[1001 titles - FmitXche

| 1111 | Table Sean -~

[11| | Executed in parallel witha o [1. PPRTTTLE A
[11T F-way padifion scan. 9

" |
Secan

There are two levels of exchange operators marked as EXCHANGE-1 and
EXCHANGE-2 in Figure 4-3. Worker process T4 is the beta process
associated with the exchange operator EXCHANGE-2.

The function of the beta processisto locally orchestrate execution of the plan
fragment below the exchange operator; it dispatches query plan information
that is heeded by the worker processes, and synchronizes the execution of the
plan fragment.

A process involved in the execution of a parallel query plan that is neither the
alpha process nor a beta process is called a gamma process.

A given paralel query planisbound at runtime to a unique alpha process, to
one or more beta processes, and to at least one gamma process. Any Adaptive
Server parallel plan needs at least two different processes (alpha and gamma)
to be executed in parallel.

126 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

To find out the mapping between exchange operators and worker processes, as
well asto figure out which process is the alpha process, and which processes
are the beta processes, use dbcc traceon(516).

Figure 4-4: Mapping between operators and processes

===== Thread to EXCHANGE map beqins =====
ALFA thread =spid:17
EXCHANGE = 2 {refers to EXCHANGE-Z)
Comp Count = 2 Exec Count
Fange Adju=stable
Conszumer : EXCHANGE = &
Farent thread =pid:34 irefers to T4)
Child thread 0: =spad:37 irefers to T1)
Child thread 1: =pid: 38 irefers to T2)
Child thread Z: =pid:36 irefers to T3)
Scheduling lewvel: 0
EXCHANGE = § irefers to EXCHAMGE-1)
Comp Count = 3 Ezxec Count = 3
Bound=s Adjustable
Consume : EXCHANGE = -1
Parent thread =spid:17 irefers to Alpha)
Child thread 0: =pid:34 irefers to T4)
Child thread 1: =pid:35& irefers to TA)
Scheduling lewvel: 0

Using parallelism in SQL operations

You can partition tables or indexesin any way that best reflects the needs of
your application. Sybase recommends that you put partitions on segments that
use different physical disks so that enough 1/0 parallelism is present. For
example, you can have a well-defined partition based on hashing of certain
columns of atable or certain ranges or alist of values ascribed to a partition.
Hash, range, and list partitions belong to the category of “semantic-based”
partitioning—given arow, you can determine to which partition the row
belongs.

Query Processing and Abstract Plans 127

Adaptive Server parallel query execution model

Round-robin partitioning has no semantics associated with its partitioning. A
row can occur in any of its partitions. The choice of columns to partition and
the type of partitioning used can have a significant impact on the performance
of the application. Partitions can be thought of as alow-cardinality index; the
columns on which partitioning must be defined, are based on the queriesin the
application.

The query processing engine and its operators take advantage of the Adaptive
Server partitioning strategy. Partitioning defined on table and indexesiscalled
static partitioning. In addition, Adaptive Server dynamically repartitions data
to match the needs for relational operations like joins, vector aggregation,
distinct, union, and so on. Repartitioning is done in streaming mode and no
storage is associated with it. Repartitioning is different from the alter table
repartition command, where static repartitioning is done.

A query plan consists of query execution operators. In Adaptive Server,
operators belong to one of two categories:

e Attribute-insensitive operators include scans, union als, and scalar
aggregation. They are not concerned about the underlying partitions.

» Attribute-sensitive operators (for example, join, distinct, union, and vector
aggregation) allow for an operation on agiven amount of datato be broken
into asmaller number of operations on smaller fragments of the datausing
semanti cs-based partitioning. Afterwards, a simple union all provides the
final result set. The union all isimplemented using a many-to-one
exchange operator.

Thefollowing sections discuss these two classes of operators. The examplesin
these sections use the following table with enough data to trigger parallel
processing.

create table RA2(al int, a2 int, a3 int)

Parallelism of attribute-insensitive operation

128

This section discusses the attribute-insensitive operations, which include scans
(seria and paralldl), scalar aggregations, and union als.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Table scan

Serial table scan

For horizontal parallelism, either at least one of the tablesin the query must be
partitioned, or the configuration parameter max repartition degree must be
greater than 1. If max repartition degree is set to 1, Adaptive Server usesthe
number of online engines as a hint. When Adaptive Server runs horizontal
parallelism, it runs multiple versions of one or more operatorsin parallel. Each
clone of an operator works on its partition, which can be statically created or
dynamically built at execution.

Thefollowing example bel ow shows the serial execution of aquery where the
table RA2 is scanned using the table scan operator. The result of this operation
is routed to the emit operator, which forwards the result to the client.

select * from RA2
QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
pages.

In versions earlier than 15.0, Adaptive Server did not try to scan an
unpartitioned tablein parallel using ahash-based scan unlessaforce option was
used. Figure 4-5 shows a scan of an allpages-locked table executed in serial
mode by asingle task T1. The task follows the page chain of the table to read
each page, while doing physical 1/0 if the needed pages are not in the cache.

Query Processing and Abstract Plans 129

Adaptive Server parallel query execution model

Figure 4-5: Serial task scans data pages

Single page chain

/X >

C

| o
Parallel table scan You can force aparallel table scan of an unpartitioned table using the Adaptive
Server force option. In this case, Adaptive Server uses a hash-based scan.
Hash-based table Figure 4-6 shows how three worker processes divide the work of accessing
scans data pages from an allpages-locked table during a hash-based table scan. Each

worker process performs alogical 1/0 on every page, but each process
examines rows on one-third of the pages, as indicated by differently shaded
lines. Hash-based table scans are used only if the user forces a parallel degree.
See “Partition skew” on page 172 for more information.

With one engine, the query still benefitsfrom parallel access because onework
process can execute while others wait for 1/O. If there are multiple engines,
some of the worker processes can be running simultaneously.

Figure 4-6: Multiple worker processes scans unpartitioned table

Single Page Chain

Multiple worker processes

130 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Partitioned-based
table scans

Hash-based scansincrease the logical 1/O for the scan, since each worker
process must access each page to hash on the page ID. For a data-only-locked
table, hash-based scans hash either on the extent ID or the allocation page ID,
so that only asingle worker process scans a page and logical 1/0 does not
increase.

If you partition this table as follows:

alter table RA2 partition by range(al, a2)
(pl values <= (500,100), p2 values <= (1000, 2000))

When the following query, Adaptive Server may choose aparallel scan of the
table. Parallel scan is chosen only if there are sufficient pages to scan and the
partition sizes are similar enough that the query will benefit from parallelism.

select * from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

3 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE:EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way
partition scan.

| | | Using I/0 Size 2 Kbytes for data pages.

| | | With LRU Buffer Replacement Strategy

for data pages.

Query Processing and Abstract Plans 131

Adaptive Server parallel query execution model

Tahle on
three partitions

Index scan

Global nonclustered
indexes

132

After partitioning the table, showplan output includes two additional opeators,
exchange and exchange:emit. This query includes two worker processes, each
of which scans a given partition and passes the data to the exchange:emit
operator, asillustrated in Figure 4-1.

Figure 4-7 shows how a query scans atable that has three partitions on three
physical disks. With asingle engine, this query can benefit from parallel
processing because oneworker process can execute while others sleep, waiting
for 1/O or waiting for locks held by other processes to be released. If multiple
engines are avail able, theworker processes can run simultaneously on multiple
engines. Such a configuration can perform extremely well.

Figure 4-7: Multiple worker processes access multiple partitions

4 A

data_dewvl data_dev2 data_dev3

k A / A j
Indexes, like tables, can be partitioned or unpartitioned. Local indexes inherit
the partitioning strategy of the table. Each local index partition scans datain
only one partition. Global indexes have a different partitioning strategy from

the base table; they reference one or more partitions. The following sections
describe the index configurations supported by Adaptive Server.

F

Adaptive Server supports global indexes that are nonclustered and
unpartitioned for all table partitioning strategies. Global indexes are supported
for compatibility with Adaptive Server versions earlier than 15.0; they arealso
useful in OLTP environments. The index and the data partitions can reside on
the same or different storage areas.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Noncovered scan of To create an unpartitioned global nonclustered index on table RA2, which is

global nonclustered partitioned by range, enter:

index using hashing

create index RA2 NC1 on RA2(a3)

The next query has a predicate that uses the index key of a3 asfollows:

select * from RA2 where a3 > 300
QUERY PLAN FOR STATEMENT 1 (at line 1).

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer and 1

Consumer processes.

EXCHANGE :EMIT Operator

SCAN Operator

FROM TABLE

RA2

Index : RA2 NC1

Forward Scan.

Positioning by key.

Keys are:

a3 ASC

Executed in parallel with a
hash scan.

Using I/0 Size 2 Kbytes for
leaf pages.

With LRU Buffer Replacement
for index leaf pages.

Using I/0 Size 2 Kbytes for

pages.

With LRU Buffer Replacement
for data pages.

3-way

index

Strategy

data

Strategy

In the above example, Adaptive Server uses an index scan using the index
RA2_NC1 using three producer threads spawned by the exchange operator.
Each of the producer threads scans all of the qualifying leaf pages and uses a
hashing algorithm on the row 1D of the qualifying data and accesses the data
pages to which it belongs. The parallelism in this caseis exhibited at the data

page level.

Query Processing and Abstract Plans

133

Adaptive Server parallel query execution model

Figure 4-8: Hash-based parallel scan of global nonclustered index
T T2 T3

Index pages

Data pages

Figure 4-9: Legend for Figure 2-8

. Pages read by worker processes T1, T2, T3

. Pages read by worker process T1

Pages read by worker process T2

Pages read by worker process T3

If the query does not need to access the data page, then it will not executein
parallel. However, in the current scheme, the partitioning columns must be
added to the query; therefore, it becomes a noncovered scan:

134 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

3 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE: EMIT Operator

|

|

|

| | | SCAN Operator

| | | FROM TABLE

|| | Ra2

| | | Index : RA2 NC1

| | | Forward Scan.

| | | Positioning by key.

| | | Keys are:

| | | a3 AsC

| | | Executed in parallel with a 2-way hash

scan.

| | | Using I/O Size 2 Kbytes for index leaf
pages.

| | | With LRU Buffer Replacement Strategy for
index leaf pages.

| | | Using I/O Size 2 Kbytes for data pages.

| | | With LRU Buffer Replacement Strategy for
data pages.

Covered scan using If there is a nonclustered index that includes the partitioning column, thereis
ir:]%':ec)!”smred global no reason for Adaptive Server to access the data pages and the query executes
inseria:

create index RA2 NC2 on RA2(a3,al,a2)

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

Query Processing and Abstract Plans 135

Adaptive Server parallel query execution model

Clustered index scans

Local indexes

Clustered indexes on
partitioned tables

Nonclustered indexes
on partitioned tables

136

The type of query is SELECT.
ROOT:EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table
will not be read.

| Keys are:

| a3 AsC

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index
leaf pages.

With a clustered index on an all-pages-locked (APL) table, a hash-based scan
strategy is not permitted. The only allowable strategy is a partitioned scan.
Adaptive Server uses a partitioned scan if that isthe right thing to do. For a
data-only-locked (DOL) table, a clustered index is usually aplacement index,
which behaves as a nonclustered index. All discussions pertaining to a
nonclustered index on an APL table apply to aclustered index on aDOL table
aswell.

Adaptive Server supports clustered and nonclustered local indexes.

Local clustered indexes allow multiple threads to scan each data partition in
parallel, which can greatly improve performance. To take advantage of this
parallelism, use a partitioned clustered index. On alocal index, datais sorted
separately within each partition. The information in each data partition
conformsto the boundari es established when the partitions were created, which
makes it possible to enforce unique index keys across the entire table.

Unique, clustered local indexes have the following restrictions:
e Index columns must include all partition columns.

e Partition columns must have the same order as the index definition's
partition key.

» Unique, clustered local indexes cannot be included on around-robin table
with more than one partition.

Adaptive Server supports local, nonclustered indexes on partitioned tables.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Thereis, however, adlight difference when using local indexes. When doing a
covered index scan of alocal nonclustered index, Adaptive Server can still use
aparallel scan because the index pages are partitioned as well.

To illustrate the difference, alocal nonclustered index is created in the
following example.

create index RA2 NC2L on RA2(a3,al,a2) local index

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

3 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2L

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base

table will not be read.

| | | Keys are:

| | | a3 ASC

| | | Executed in parallel with a 2-way
partition scan.

| | | Using I/O Size 2 Kbytes for index leaf

pages.
| | | With LRU Buffer Replacement Strategy
for index leaf pages.

Query Processing and Abstract Plans 137

Adaptive Server parallel query execution model

Scalar aggregation

Sometimes, Adaptive Server chooses a hash-based scan on alocal index. This
occurs when a different parallel degree is needed or when the datain the
partition is skewed such that a hash-based parallel scan is preferred.

The Transact-SQL scalar aggregation operation can be donein serial or in
parallel.

Two-phased scalar aggregation

138

Inaparallel scalar aggregation, the aggregation operation is performed in two
phases, using two scalar aggregate operators. In thefirst phase, thelower scalar
aggregation operator performs aggregation on the data stream. The result of
scalar aggregation from the first phase is merged using a many-to-one
exchange operator, and this stream is aggregated a second time.

In case of acount(*) aggregation, the second phase aggregation performs a
scalar sum. Thisis highlighted in the showplan output of the next example.

select count (*) from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

5 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

| EXCHANGE Operator (Merged)
| Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE :EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| SCAN Operator

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Serial aggregation

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a
2-way partition scan.

| | | | | Using I/O Size 2 Kbytes for data

pages.
| | | | | With LRU Buffer Replacement
Strategy for data pages.

Adaptive Server may also choose to do the aggregation in serial. If the amount
of datato be aggregated is not enough to guarantee a performance advantage,
a serial aggregation may be the preferred technique. In case of a serial
aggregation, the result of the scan is merged using a many-to-one exchange
operator. Thisis shown in the example below, where a selective predicate has
been added to minimize the amount of data flowing into the scalar aggregate
operator. In such acase, it probably does not make sense to do the aggregation
inparallel.

select count (*) from RA2 where a2 = 10

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| EXCHANGE Operator (Merged)
| Executed in parallel by 2 Producer
and 1 Consumer processes.

EXCHANGE: EMIT Operator

|

|

| | SCAN Operator
| | FROM TABLE

Query Processing and Abstract Plans 139

Adaptive Server parallel query execution model

union all

Parallel union all

140

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way
partition scan.

| | | | Using I/O Size 2 Kbytes for data

pages.
| | | | With LRU Buffer Replacement
Strategy for data pages.

union all operators are implemented using a physical operator by the same
name. union all isafairly simple operation and it paysto parallelize it only
when thereis alot of data being moved through it.

The only condition to generating aparallel union all isthat each of its operands
must be of the same degree, irrespective of the type of partitioning they have.
The following example shows a union all operator being processed in parallel.
The position of the exchange operator above the union all operator signifiesthat

it is being processed by multiple threads.
A new table, HA2, is taken to illustrate this next example.
create table HA2(al int, a2 int, a3 int)

partition by hash(al, a2) (pl, p2)

select * from RA2
union all
select * from HA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

The type of query is SELECT.
ROOT:EMIT Operator
| EXCHANGE Operator (Merged)

|Executed in parallel by 2 Producer and 1 Consumer
processes.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Serial union all

EXCHANGE :EMIT Operator
|UNION ALL Operator has 2 children.

| SCAN Operator
| FROM TABLE

| RA2

| Table Scan.

| | | | Executed in parallel with a 2-way
partition scan.

| SCAN Operator

| FROM TABLE

| HA2

| Table Scan.

| | | | Executed in parallel with a 2-way
partition scan.

In the next example, the data from each side of the union operator is restricted
by selective predicates on either side. The amount of data being sent through
the union all operator is small enough that Adaptive Server decides not to run
themin parallel. Instead, each scan of thetables RA2 and HA2 are organized by
putting 2-to-1 exchange operators on each side of the union. The resultant
operands are then processed in parallel by the union all operator. Thisis
illustrated in the next query.

select * from RA2

where a2 > 2400

union all

select * from HA2

where a3 in (10,20)

Executed in parallel by coordinating process and 4
worker processes.

7 operator(s) under root
The type of query is SELECT.

ROOT:EMIT Operator

Query Processing and Abstract Plans 141

Adaptive Server parallel query execution model

|UNION ALL Operator has 2 children.

| | EXCHANGE Operator (Merged)
| |Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Executed in parallel with a 2-way
partition scan.

| | EXCHANGE Operator (Merged)
| |Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE: EMIT Operator

| SCAN Operator

| FROM TABLE

| HA2

| Table Scan.

| Executed in parallel with a 2-way
partition scan.

Parallelism of attribute-sensitive operation

This section discusses issues involving the attribute-sensitive operations,
which includes such operations as joins, vector aggregations, and unions.

142 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

join

Tables with same
useful partitioning

If twotablesarejoinedin parallel, Adaptive Server triesto use semantics-based
partitioning to make the join more efficient, depending on the amount of data
being joined and the type of partitioning that each of the operands have. If the
amount of datato be joined is small, but the number of pagesto scan for each
of thetablesis quite significant, Adaptive Server seridlizesthe parallel streams
from each side and the join is done in serial mode. In this case, the query
optimizer determinesthat it is suboptimal to run ajoin operation in parallel. In
general, one or both of the operands used for the join operators may be any
intermediate operator, like another join or agrouping operator, but the examples
used show only scans as operands.

The partitioning of each operand of ajoinisuseful only with respect to the join
predicate. If two tables have the same partitioning, and the partitioning
columns are a subset of the join predicate, then the tables are said to be
equipartitioned. For example, if you create another table, RB2, which is
partitioned similarly to that of RA2, using the following DDL command:

create table RB2 (bl int, b2 int, b3 int)
partition by range (bl,b2)
(pl values <= (500,100), p2 values <= (1000, 2000))

Then join RB2 with RA2; the scans and the join can be donein parallel without
additional repartitioning. Adaptive Server can join the first partition of RA2
with the first partition of RB2, then join the second partition of RA2 with the
second partition of RB2. Thisis called an equipartitioned join and is possible
only if the two tablesjoin on columns a1, b1 and a2, b2 as shown below:

select * from RA2, RB2
where al = bl and a2 = b2 and a3 < 0

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.
7 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator
| EXCHANGE Operator (Merged)

|Executed in parallel by 2 Producer
and 1 Consumer processes.

Query Processing and Abstract Plans 143

Adaptive Server parallel query execution model

| | EXCHANGE : EMIT Operator

I

| | | NESTED LOOP JOIN Operator
(Join Type: Inner Join)

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a
2-way partition scan.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a
2-way partition scan.

The exchange operator is shown above the nested-loop-join. Thisimpliesthat it
spawns two producer threads: the first scansthefirst partition of RA2 and RB2
and performsthe nested-loop join; the second scans the second partition of RA2
and RB2 to do the nested-loop join. The two threads merge the results using a
many-to-one (in this case, two-to-one) exchange operator.

One of the tables with In this example, the table RB2 is repartitioned to athree-way hash partitioning
useful partitioning on column b1 using the alter table command.

alter table RB2 partition by hash(bl) (pl, p2, p3)
Now, take a slightly modified join query as shown below:

select * from RA2, RB2 where al = bl

144 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

The partitioning on table RA2 is not useful because the partitioned columnsare
not asubset of thejoining columns (that is, given avaluefor thejoining column
al, you cannot say the partition to which it belongs). However, the partitioning
onRB2 ishelpful becauseit matchesthejoining column bl of RB2. Inthiscase,
the query optimizer repartitions table RA2 to match the partitioning of RB2 by
using hash partitioning on column a1 of RA2 (the joining column, which is
followed by athree-way merge join). The many-to-many (2-to-3) exchange
operator abovethe scan of RA2 doesthisdynamic repartitioning. Theexchange
operator above the merge join operator merges the result using a many-to-one
(3-to-1 in this case) exchange operator. The showplan output for this query is
shown in the following example:

select * from RA2, RB2 where al = bl

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5
worker processes.

10 operator(s) under root
The type of query is SELECT.

ROOT:EMIT Operator
| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer and 1 Consumer
processes.

| |MERGE JOIN Operator (Join Type: Inner
Join)

Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

|
EXCHANGE:EMIT Operator
| p
|
|

|Using Worktablel for internal storage.

| | EXCHANGE Operator (Repartitioned)

| | Executed in parallel by 2 Producer
and 3 Consumer processes.

|
|
|
|
| | SORT Operator
|
|
|
|

| | | | | | EXCHANGE : EMIT Operator

Query Processing and Abstract Plans 145

Adaptive Server parallel query execution model

Both tables with
useless partitioning

146

RESTRICT Operator

| SCAN Operator
| FROM TABLE

| RA2

| Table Scan.
| Forward Scan.

| Positioning at start
of table.

| | | | | | | | Executed in parallel
with a 2-way
partition scan.

| SORT Operator

|Using Worktable2 for internal storage.

|

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a
3-way partition scan.

The next example uses ajoin where the native partitioning of the tables on both
sidesis useless. The partitioning on table RA2 is on columns (al1,a2) and that
of RB2 ison (b1). Thejoin predicate is on different sets of columns, and the
partitioning for both tables does not help at all. One option isto dynamically
repartition both sides of the join. By repartitioning table RA2 using a M-to-N
(2-to-3) exchange operator. Adaptive Server chooses column a3 of table RA2
for repartitioning, asit isinvolved in the join with table RB2. For identical
reasons, table RB2 is also repartitioned three ways on column b3. The
repartitioned operands of the join are equipartitioned with respect to the join
predicate, which means that the corresponding partitions from each side will
join. In general, when repartitioning needs to be done on both sides of the join
operator, Adaptive Server employs a hash-based partitioning scheme.

select * from RA2, RB2 where a3 = b3

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 8
worker processes.

12 operator (s) under root

The type of query is SELECT.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
| Executed in parallel by 3 Producer and 1 Consumer
processes.

Query Processing and Abstract Plans

| EXCHANGE : EMIT Operator

| |MERGE JOIN Operator

(Join Type:

Inner Join)

Using Worktable3 for internal storage.

Key Count:

Key Ordering: ASC

| SORT Operator
|Using Worktablel for internal

storage.

| | EXCHANGE Operator (Repartitioned)

| |Executed in parallel by 2
Producer and 3 Consumer
processes.

EXCHANGE:EMIT Operator

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at
start of table.

| | Executed in

parallel with

a 2-way

partition scan.

| SORT Operator
|Using Worktable2 for internal
storage.

147

Adaptive Server parallel query execution model

Replicated join

148

| | | | | EXCHANGE Operator (Repartitioned)

| | | | |Executed in parallel by 3
Producer and 3 Consumer
processes.

EXCHANGE:EMIT Operator

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

| Positioning at start
of table.

| | | | | | | Executed in parallel

with a 3-way
partition scan.

In general, dl joins, including nested-loop, merge, and hash joins, behavein a
similar way. nested-loop joins display one exception, which is that the inner
side of anested-loop join cannot be repartitioned. This limitation occurs
because, in the case of anested-loop join, a column value for the joining
predicate is pushed from the outer side to the inner side.

A replicated join is useful when an index nested-loop join heeds to be used.
Consider the case where alarge table has auseful index on the joining column,
but useless partitioning, and joins to a small table that is either partitioned or
not partitioned. The small table can be replicated N ways to that of the inner
table, where N is the number of partitions of the large table. Each partition of
thelargetableisjoined with the small table and, because no exchange operator
is needed on the inner side of the join, an index nested-loop join is allowed.

create table big table(bl int, b2 int, b3 int)
partition by hash(b3) (pl, p2)

create index big table ncl on big table(bl)
create table small table(sl int, a2 int, s3 int)

select * from small table, big table
where small table.sl = big table.bl

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3
worker processes.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

7 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1

Query Processing and Abstract Plans

Consumer processes.

| EXCHANGE : EMIT Operator

|NESTED LOOP JOIN Operator (Join Type:
Inner Join)

| | EXCHANGE Operator (Replicated)
| |Executed in parallel by 1 Producer
and 2 Consumer processes.

EXCHANGE: EMIT Operator

|

|

| | SCAN Operator

| | FROM TABLE

| | small table

| | Table Scan.

| SCAN Operator

| FROM TABLE

| big table

| Index : big table ncl

| Forward Scan.

| Positioning by key.

| Keys are:

| bl ASC

| Executed in parallel with a
2-way hash scan.

149

Adaptive Server parallel query execution model

Parallel reformatting

150

Parallel reformatting is especially useful when you are working with a
nested-loop join. Usually, reformatting refers to materializing the inner side of
anested join into aworktable, then creating an index on the joining predicate.
With paralléel queries and nested-loop join, there is another reason to do
reformatting when there is no useful index on the joining column or
nested-loop join isthe only viable option for a query because of the
server/session/query level settings. Thisis an important option for Adaptive
Server. The outer side may have useful partitioning and, if not, it can be
repartitioned to create that useful partitioning. But for the inner side of a
nested-loop join, any repartitioning means that the table must be reformatted
into aworktable that uses the new partitioning strategy. The inner scan of a
nested-loop join must then access the worktable.

In this next example, partitioning for tables RA2 and RB2 is on columns (a1,
a2) and (b1, b2) respectively. The query isrun with merge and hash join turned
off for the session.

select * from RA2, RB2 where al = bl and a2 = b3
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 12
worker processes.
17 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator
| SEQUENCER Operator has 2 children.
| | EXCHANGE Operator (Merged)
| |Executed in parallel by 4 Producer
and 1 Consumer processes.
| EXCHANGE : EMIT Operator
| | STORE Operator
| | Worktablel created, in allpages

locking mode, for REFORMATTING.
Creating clustered index.

| The update mode is direct.

|
|
| | INSERT Operator
|
|

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Query Processing and Abstract Plans

| | | | | EXCHANGE Operator
(Repartitioned)

| | | | |Executed in parallel by
2 Producer and 4
Consumer processes.

EXCHANGE:EMIT Operator
RESTRICT Operator

| SCAN Operator
| FROM TABLE
| RB2

| Table Scan.
| Executed in

parallel
with a
2-way
partition
scan.

I

| | | | TO TABLE

| | | | Worktablel.

| EXCHANGE Operator (Merged)
|Executed in parallel by 4 Producer
and 1 Consumer processes.

|

| | EXCHANGE : EMIT Operator

|

| | |NESTED LOOP JOIN Operator
(Join Type: Inner Join)

| | | | EXCHANGE Operator (Repartitioned)

| | | |Executed in parallel by 2
Producer and 4 Consumer
processes.

EXCHANGE: EMIT Operator
RESTRICT Operator

| FROM TABLE
| Ra2

|
|
| | SCAN Operator
|
|

151

Adaptive Server parallel query execution model

Serial join

152

| | | | | | | | Table Scan.

| | | | | | | | Executed in
parallel with
a 2-way
partition scan.

| | SCAN Operator

| | FROM TABLE

| | Worktablel.

| | Using Clustered Index.

| | Forward Scan.

| | Positioning by key.

Note the presence of asequence operator. Thisoperator executesall of itschild
operators but the last, before executing the last child operator. In this case, it
executes the first child operator, which reformats table RB2 into a worktable
using afour-way hash partitioning on columnsb1 and b3. ThetableRA2 isalso
repartitioned four ways to match the stored partitioning of the worktable.

Sometimes, it may not make senseto run ajoinin parallel because of the
amount of datathat needsto be joined. If you run aquery similar to that of the
earlier join queries, but now have predicates on each of the tables (RA2 and
RB2) such that the amount of datato be joined is not enough, the join may be
donein serial mode. In such acase, it does not matter how these tables are
partitioned. The query still benefits from scanning the tables in parallel.

select * from RA2, RB2 where al=bl and a2 = b2
and a3 = 0 and b2 = 20

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 4
worker processes.
11 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator
MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable3 for internal storage.
Key Count: 1

|
|
|
Key Ordering: ASC
| Y g
|
|

| SORT Operator

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Using Worktablel for internal storage.

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and
1 Consumer processes.

EXCHANGE :EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Executed in parallel with
a 2-way partition scan.

| | SORT Operator

| |Using Worktable2 for internal storage.

| | | EXCHANGE Operator (Merged)

| | |Executed in parallel by 2 Producer and
1 Consumer processes.

EXCHANGE :EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Executed in parallel with
a 2-way partition scan.

Semijoins Semijoins, which result from flattening of in/exist subqueries, behave the same
way asregular inner joins. However, replicated joins are not used for semijoins,
because an outer row can match more than one time in such a situation.

Outer joins In terms of parallel processing for outer joins, replicated joins are not
considered. Everything else behavesin asimilar way asregular inner joins.
One other point of differenceisthat no partition elimination is done for any
table in an outer join that belongs to the outer group.

Query Processing and Abstract Plans 153

Adaptive Server parallel query execution model

Vector aggregation

In-partitioned vector
aggregation

154

Vector aggregation refers to queries with group-bys. There are different ways
Adaptive Server can perform vector aggregation. The actual algorithms are not
described here; only the technique for parallel evaluation is shown in the
following sections.

If any base or intermediate relation requires agrouping and is partitioned on a
subset, or the same columns as that of the columns in the group by clause, the
grouping operation can be done in parallel on each of the partition and the
resultant grouped streams merged using a simple N-to-1 exchange. Thisis
because a given group cannot appear in more than one stream. The same goes
for grouping over any SQL query aslong as you use semantics-based
partitioning on the grouping columns or a subset of them. This method of
parallel vector aggregation is called in-partitioned aggregation.

The following query uses a parallel in-partitioned vector aggregation since
range partitioning is defined on the columns a1 and a2, which also happensto
be the column on which the aggregation is needed.

select count(*), al, a2 from RA2 group by al,a2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)

|Executed in parallel by 2 Producer and
1 Consumer processes.

EXCHANGE:EMIT Operator

HASH VECTOR AGGREGATE Operator

GROUP BY

Evaluate Grouped COUNT AGGREGATE.
Using Worktablel for internal storage.

SCAN Operator
| P

| FROM TABLE

| RA2

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

| | Table Scan.

| | Forward Scan.

| | Positioning at start of table.

| | Executed in parallel with a 2-way

partition scan.

| | | | Using I/O Size 2 Kbytes for data
pages.

| | | | With LRU Buffer Replacement

Strategy for data pages.

Repartitioned vector Sometimes, the partitioning of the table or the intermediate results may not be

aggregation useful for the grouping operation. It may still be worthwhileto do the grouping
operation in parallel by repartitioning the source data to match the grouping
columns, then applying the parallel vector aggregation. Such a scenario is
shown below, where the partitioning is on columns (a1, a2), but the query
reguires a vector aggregation on column al.

select count(*), al from RA2 group by al
QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 4
worker processes.

6 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
| Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE:EMIT Operator

|HASH VECTOR AGGREGATE Operator

| GROUP BY

| Evaluate Grouped COUNT AGGREGATE.

| Using Worktablel for internal storage.
|

|

|

|EXCHANGE Operator (Repartitioned)
|Executed in parallel by 2 Producer
and 2 Consumer processes.

Query Processing and Abstract Plans 155

Adaptive Server parallel query execution model

Two-phased vector
aggregation

156

EXCHANGE:EMIT Operator

SCAN Operator

FROM TABLE

RA2

Table Scan.

Forward Scan.

Positioning at start of
table.

Executed in parallel with
a 2-way partition scan.

For the query in the previous example, repartitioning may be expensive.
Another possibility isto do afirst level of grouping, merge the datausing a
N-to-1 exchange operator, then do another level of grouping. Thisiscalled a
two-phased vector aggregation. Depending on the number of duplicatesfor the
grouping column, Adaptive Server can reduce the cardinality of the data
streaming through the N-to-1 exchange, then the second level of grouping

becomes relatively inexpensive.

select count(*), al from RA2 group by al

QUERY PLAN FOR STATEMENT 1

(at line 1).

Executed in parallel by coordinating process and 2

worker processes.

5 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

GROUP BY

HASH VECTOR AGGREGATE Operator

Evaluate Grouped SUM OR AVERAGE AGGREGATE.
Using Worktable2 for internal storage.

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and

1 Consumer processes.

| GROUP BY
| Evaluate Grouped COUNT AGGREGATE.

EXCHANGE : EMIT Operator

|
|
| |HASH VECTOR AGGREGATE Operator
|
|

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

| | | | Using Worktablel for internal
storage.

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Executed in parallel with
a 2-way partition scan.

There are two vector aggregate operators—the name two-phase vector

aggregation.
Serial vector As with some of the earlier examples, if the amount of data flowing into the
aggregation grouping operator is restricted by using a predicate, executing that query in

parallel may not make much sense. In such acase, the partitions are scanned in
parallel and an N-to-1 exchange operator is used to serialize the stream
followed by a serial vector aggregation:

select count(*), al, a2 from RA2
where al between 100 and 200
group by al, a2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and
2 worker processes.

4 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

|HASH VECTOR AGGREGATE Operator

| GROUP BY

| Evaluate Grouped COUNT AGGREGATE.

| Using Worktablel for internal storage.
|

|

|

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1
Consumer processes.

|
| | | EXCHANGE : EMIT Operator
[.

| | | | SCAN Operator

| | | | FROM TABLE

Query Processing and Abstract Plans 157

Adaptive Server parallel query execution model

distinct

Queries with an in list

158

|1 | | Rra2
Positioning at start of table.
[N B g
| | | | Executed in parallel with a 2-way
partition scan.

You cannot always group on the partitioning columns, or take advantage of a
tablethat is already partitioned on the grouping columns. The query optimizer
determinesif it is better to repartition and perform the grouping in parallel, or
merge the data stream in a partitioned table and do the grouping in serial or a
two-phased aggregation.

Think of querieswith distinct operationsas grouped vector aggregation without
the aggregation part. For example:

select distinct al, a2 from RA2
issame as.
select al, a2 from RA2 group by al, a2

All of the methodol ogiesthat are applicableto vector aggregates are applicable
here as well.

Adaptive Server uses an optimized technique to handle aniin list. Thisisa
common SQL construct. So, aconstruct like:

col in (valuel, wvalue2, ..valuek)
issame as.
col = valuel OR col = value2 OR col = valuek

Thevaluesin thein list are put into a special in-memory table and sorted for
removal of duplicates.Thetableisthen joined back with the base table using an
index nested-loop join. The following example illustrates this with two values
inthein list that correspond to two valuesin the or list:

SCAN Operator

FROM OR List

OR List has up to 2 rows of OR/IN values.

select * from RA2 where a3 in (1425, 2940)

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2

worker processes.

6 operator (s) under root

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Queries with or
clauses

The type of query is SELECT.
ROOT:EMIT Operator
| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1
Consumer processes.
| EXCHANGE : EMIT Operator
| |NESTED LOOP JOIN Operator (Join Type:

Inner Join)

| FROM OR List
| OR List has up to 2 rows of OR/IN
values.

|
| | SCAN Operator
|
|

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1

| Forward Scan.

| Positioning by key.

| Keys are:

| a3 ASC

| Executed in parallel with a
2-way hash scan.

Adaptive Server takesadigunctive predicate like an or clause and applies each
side of the digjunction separately to qualify a set of row | Ds (RIDs). The set of
conjunctive predicates on each side of the digunction must be indexable. Also,
the conjunctive predicates on each side of the digunction cannot have further
digunction within them; that is, it makes|little sense to use an arbitrarily deep
nesting of digunctive and conjunctive clauses. In the next example, a
digunctive predicate is taken on the same column (you can have predicates on
different columns aslong as you have indexes that can do inexpensive scans),
but the predicates may qualify an overlapping set of datarows. Adaptive Server
usesthe predicates on each side of the digunction separately and qualifies aset
of row IDs. These row I1Ds are then subjected to duplicate elimination.

select a3 from RA2 where a3 = 2955 or a3 > 2990

Query Processing and Abstract Plans 159

Adaptive Server parallel query execution model

160

QUERY PLAN FOR STATEMENT 1

(at line 1).

Executed in parallel by coordinating process and 2

worker processes.

8 operator (s)

under root

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1

Consumer processes.

EXCHANGE : EMIT Operator

RID JOIN Operator

Using Worktable2 for internal storage.

SCAN Operator

HASH UNION Operator has 2 children.
Using Worktablel for internal storage.

FROM TABLE
RA2
RA2 NC1

Forward Scan.

Positioning by key.
Index contains all needed
columns.Base table will not

|
|
|
| Index
|
|
|

be read.
| Keys are:
| a3 ASC

| Executed in parallel with a
2-way hash scan.

SCAN Operator

FROM TABLE
RA2
RA2_ NC1

Forward Scan.

Positioning by key.
Index contains all needed

|
|
|
| Index
|
|
|

columns.

Base table will

not be read.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Queries with an order
by clause

| | | | | Keys are:

[A R a3 AsC

| | | | | Executed in parallel with a
2-way hash scan.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Using Dynamic Index.

| Forward Scan.

| Positioning by Row IDentifier
(RID.)

| | | | | Using I/0O Size 2 Kbytes for

data pages.
| | | | | With LRU Buffer Replacement
Strategy for data pages.

Two separate index scans are employed using the index RA2_NC1, whichis
defined on the column a3. The qualified set of row IDs are then checked for
duplicate row IDs, and finally, joined back to the base table. Note the line
Positioning by Row Identifier (RID).You canusedifferentindexes
for each side of the digunction, depending on what the predicates are, aslong
asthey are indexable. One way to easily identify thisisto run the query
separately with each side of the digunction to make surethat the predicates are
indexable. Adaptive Server may not choose an index intersection if it seems
more expensive than a single scan of thetable.

If aquery requires sorted output because of the presence of an order by clause,
Adaptive Server can apply the sort in parallel. First it tries to avoid the sort if
thereis someinherent ordering available. If it isforced to do the sort, it seesif
the sort can be done in parallel. To do that, it may repartition an existing data
stream or it may use the existing partitioning scheme, then apply the sort to
each of the constituent streams. The resultant datais merged using an N-to-1
order, preserving the exchange operator.

select * from RA2 order by al, a2

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is SELECT.

Query Processing and Abstract Plans 161

Adaptive Server parallel query execution model

Subqueries

162

ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
| Executed in parallel by 2 Producer and
1 Consumer processes.

EXCHANGE :EMIT Operator

| SORT Operator

| Using Worktablel for internal storage.

|

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2L

| Forward Scan.

| Positioning at index start.

| Executed in parallel with a
2-way partition scan.

Depending upon the volume of datato be sorted, and the available resources,
Adaptive Server may repartition the data stream to a higher degree than the
current degree of the stream, so that the sort operation is faster. This depends
on whether the benefit obtained from doing the sort in parallel far outweighs
the overheads of repartitioning.

When a query contains a subquery, Adaptive Server uses different methods to
reduce the cost of processing the subquery. Parallel optimization depends on
the type of subquery:

» Materialized subqueries— parallel query methods are not considered for
the materialization step.

e Flattened subqueries — parallel query optimization is considered only
when the subquery is flattened to aregular inner join or a semijoin.

* Nested subqueries— parallel operations are considered for the outermost
query block in a query containing a subquery; the inner, nested queries
alwaysexecute serialy. Thismeansthat all tablesin nested subqueries are
accessed serially. In the following example, the table RA2 is accessed in
parallel, but theresult isthat thetableisserialized using a2-to-1 exchange
operator before accessing the subquery. Thetable RB2 inside the subquery
isaccessed in paralel.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

select count (*) from RA2 where not exists
(select * from RB2 where RA2.al = bl)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

8 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

|
|
|
| | SQFILTER Operator has 2 children.
I
| | | EXCHANGE Operator (Merged)
I

|Executed in parallel by 2 Producer
and 1 Consumer processes.

EXCHANGE:EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2L

| Forward Scan.

| Executed in parallel with
a 2-way partition scan.

Run subquery 1 (at nesting level 1).

QUERY PLAN FOR SUBQUERY 1 (at nesting
level 1 and at line 2).

Correlated Subquery.
Subquery under an EXISTS predicate.

|SCALAR AGGREGATE Operator
| Evaluate Ungrouped ANY AGGREGATE.

Query Processing and Abstract Plans 163

Adaptive Server parallel query execution model

164

| | | Scanning only up to the first
qualifying row.

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

END OF QUERY PLAN FOR SUBQUERY 1.

The following example shows an in subquery flattened into a semijoin.
Actually, Adaptive Server does even better; it converts thisinto an inner join
to provide greater flexibility in shuffling the tables in the join order. As seen
below, the table RB2, which was originally in the subquery, is now being
accessed in parallel.

select * from RA2 where al in (select bl from RB2)
QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 5
worker processes.

10 operator (s) under root

The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer and 1 Consumer
processes.

| EXCHANGE : EMIT Operator

| |[MERGE JOIN Operator (Join Type: Inner Join)
| | Using Worktable3 for internal storage.

| | Key Count: 1

| | Key Ordering: ASC
|
|
|

SORT Operator
P
| Using Worktablel for internal
storage.

| | | | | SCAN Operator

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

| | | | SORT Operator

| FROM TABLE

| RB2

| Table Scan.

| Executed in parallel with a
3-way partition scan.

| | | | Using Worktable2 for internal
storage.

| | | | | EXCHANGE Operator (Merged)
| | | | |Executed in parallel by 2
Producer and 3 Consumer

processes.

select into clauses

EXCHANGE:EMIT Operator

RESTRICT Operator

SCAN Operator

FROM TABLE
RA2
Index : RA2 NC2L
Forward Scan.
Positioning at
index start.
Executed in
parallel with
a 2-way
partition scan.

Querieswith select into clauses create anew tableto store the query’sresult set.
Adaptive Server optimizes the base query portion of a select into command in
the same way it does a standard query, considering both parallel and serial
access methods. A select into statement that is executed in parallel:

e Createsthe new table using columns specified in the select into statement.

e Creates N partitionsin the new table, where N isthe degree of parallelism
that the optimizer chooses for the insert operation in the query.

« Populates the new table with query results, using N worker processes.

Query Processing and Abstract Plans

165

Adaptive Server parallel query execution model

e Unpartitions the new table, if no specific destination partitioning is
required.

Performing a select into statement in parallel requires more steps than an
equivalent serial query plan. Thisisasimple select into donein parallel:

select * into RAT2 from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator (s) under root
The type of query is INSERT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE: EMIT Operator

INSERT Operator
The update mode is direct.

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way
partition scan.

RAT2
Using I/0 Size 2 Kbytes for data
pages.

|
| TO TABLE
|
|

In this case, Adaptive Server does not try to increase the degree of the stream
coming from the scan of table RA2 and uses it to do a parallél insert into the
destination table. The destination table isinitially created using round-robin
partitioning of degree two. After the insert, the table is unpartitioned.

166 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

If the data set to be inserted is not big enough, Adaptive Server may choose to
insert this datain serial. The scan of the source table can still be donein
paralléel. The destination table is then created as an unpartitioned table.

Theselect into clause has been enhanced to allow destination partitioning to be
specified. In such acase, the destination tableis created using that partitioning,
and Adaptive Server finds the most optimal way to insert data. If the
destination table must be partitioned the same way asthe sourcedata, and there
is enough data to insert, the insert operator executesin parallel.

The next example showsthe same partitioning for source and destination table,
and demonstrates that Adaptive Server recognizes this scenario and chooses
not to repartition the source data.

select * into new table

partition by range(al, a2)

(pl values <= (500,100), p2 values <= (1000, 2000))
from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is INSERT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE : EMIT Operator

INSERT Operator
The update mode is direct.

| SCAN Operator

| FROM TABLE

| Ra2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way

Query Processing and Abstract Plans 167

Adaptive Server parallel query execution model

partition scan.

RRA2
Using I/0 Size 16 Kbytes for data
pages.

|
| TO TABLE
|
|

If the source partiti oning does not match that of the destination table, the source
data must be repartitioned. Thisisillustrated in the next example, where the
insert isdone in parallel using two worker processes after the datais
repartitioned using a 2-to-2 exchange operator that converts the data from
range partitioning to hash partitioning.

select * into HHA2
partition by hash(al, a2)
(pl, p2)

from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 4
worker processes.

6 operator (s) under root

The type of query is INSERT.
ROOT:EMIT Operator

| EXCHANGE Operator (Merged)
|Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE: EMIT Operator

|

|

| | INSERT Operator

| | The update mode is direct.

|

| | | EXCHANGE OperatorEXCHANGE Operator (
Merged)

| | | | Executed in parallel by 2 Producer

and 2 Consumer processes.

| | | | | EXCHANGE : EMIT Operator

168 Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a
2-way partition scan.

|

| TO TABLE

| HHA2

| Using I/O Size 16 Kbytes for data
pages.

insert/delete/update

insert, delete, and update operations are done in serial in Adaptive Server.
However, tables other than the destination table used in the query to qualify
rows to be deleted or updated can be accessed in parallel.

delete from RA2

where exists

(select * from RB2

where RA2.al = bl and RA2.a2 = b2)

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 3
worker processes.

9 operator (s) under root

The type of query is DELETE.

ROOT:EMIT Operator

DELETE Operator
The update mode is deferred.

NESTED LOOP JOIN Operator (Join Type: Inner Join)

SORT Operator
Using Worktablel for internal storage.

| EXCHANGE Operator (Merged)
|Executed in parallel by 3 Producer
and 1 Consumer processes.

Query Processing and Abstract Plans 169

Adaptive Server parallel query execution model

170

EXCHANGE:EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

| Positioning at start of

table.

| | | | | Executed in parallel with
a 3-way partition scan.

| | | | | Using I/O Size 2 Kbytes
for data pages.

| | | | | wWith LRU Buffer Replacement

Strategy for data pages.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1
| Forward Scan.

| Positioning by key.
| Keys are:

| a3 AsC

TO TABLE

RA2

Using I/0 Size 2 Kbytes for data pages.

The table RB2, which isbeing deleted, is scanned and deleted in serial.
However, table RA2 was scanned in parallel. The same scenario istrue for
update Or insert statements.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Partition elimination

One of the advantages of semantic partitioning isthat the query processor may
be abl e to take advantage of thisand be able to disqualify partitions at compile
time. Thisis possible for range, hash, and list partitions. With hash partitions,
only equality predicates can be used, whereas for range and list partitions
equality and in-equality predicates can be used to eliminate partitions. For
example, consider table RA2 with its semantic partitioning defined on columns
al, a2 where (p1 values <= (500,100) and p2 values <= (1000, 2000)). If there
are predicates on columns al or columnsal, a2, then it would be possible to
do some partition elimination. For example:

select * from RA2 where al > 1500
does not qualify any data. This can be seen in the showplan output.

QUERY PLAN FOR STATEMENT 1 (at line 1).
SCAN Operator
FROM TABLE
RA2
[Eliminated Partitions : 1 2]
Index : RA2 NC2L

Thephrase Eliminated Partitions identifiesthe partition in accordance
with how it was created and assigns an ordinal number for identification. For
table RA2, the partition represented by p1 where (a1, a2) <= (500, 100) is
considered to be partition number one and p2 where (a1, a2) > (500, 100) and
<= (1000, 2000) is identified as partition number two.

Consider an equality query on a hash-partitioned table where al keysin the
hash partitioning have an equality clause. This can be shown by taking table
HA2, which is hash-partitioned two ways on columns (a1, a2). The ordinal
numbersrefer to the order in which partitionsarelisted in the output of sp_help.

select * from HA2 where al = 10 and a2 = 20

QUERY PLAN FOR STATEMENT 1 (at line 1).

| SCAN Operator

| FROM TABLE

| HA2

| [Eliminated Partitions : 1]
| Table Scan.

Query Processing and Abstract Plans 171

Adaptive Server parallel query execution model

Partition skew

172

Partition skew plays an important part in determining whether a parallel
partitioned scan can be used. Adaptive Server partition skew is defined as the
ratio of the size of the largest partition to the average size of a partition.
Consider atablewith four partitions of sizes 10, 20, 35, and 80 pages. The size
of the average partitionis (20 + 20 + 35 + 85)/4 = 40 pages. The biggest
partition has 85 pages so partition skew is calculated as 85/40 = 2.125. In
partitioned scans, the cost of doing a parallel scan is as expensive as doing the
scan on the largest partition. Instead, a hash-based partition may turn out to be
fast, as each worker process may hash on a page number or an allocation unit
and scan its portion of the data. The penalty paid in terms of loss of
performance by skewed partitionsis not aways at the scan level, but rather as
more complex operatorslike several join operationsare built over thedata. The
margin of error increases exponentially in such cases.

Partition skew can be easily found by running sp_help on atable:

sp_help HA2

name type partition type partitions partition keys
HA2 base table hash 2 al, a2
partition name partition id pages segment

create date

HA2 752002679 752002679 324 default
Aug 10 2005 2:05PM
HA2 768002736 768002736 343 default

Aug 10 2005 2:05PM

Partition Conditions

Avg pages Max pages Min pages Ratio (Max/Avg)

Ratio (Min/Avg)

333 343 324 1.030030

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

0.972973

Alternatively, skew can be calculated by querying the systabstats system
catalog, where the number of pagesin each partition islisted.

Why queries do not run in parallel
Adaptive Server runs aquery in serial when:

Runtime adjustment

Thereis not enough data to benefit from parallel access.
The query contains no equijoin predicates like:

select * from RA2, RB2
where al > bl

There are not enough resources, such as thread or memory, to run aquery
inparalldl.

Uses a covered scan of aglobal nonclustered index.

Tables and indexes are accessed inside a nested subquery that cannot be
flattened.

If there are not enough worker processes available at runtime, the execution
engine attempts to reduce the number of worker processes used by the
exchange operators present in the plan.

It does so in two ways:

First, by attempting to reduce the worker process usage of certain
exchange operatorsin the query plan without resorting to serial
recompilation of the query. Depending on the semantics of the query plan,
certain exchange operators are adjustable and some are not. Some are
limited in the way they can be adjusted.

Parallel query plans need a minimum number of worker processesto run.
When enough worker processes are not avail able, the query is recompiled
serially. When recompilation is not possible, the query is aborted and the
appropriate error message is generated.

Adaptive Server supports serial recompilation for these type of queries:

Query Processing and Abstract Plans 173

Adaptive Server parallel query execution model

» All ad-hoc select queries, except for select into, alter table, and execute
immediate queries.

e All stored procedures, except for select into and alter table queries.

Support for select into for ad-hoc and stored procedures will be availablein a
future release.

Recognizing and managing runtime adjustments

Adaptive Server provides two mechanismsto help you observe runtime
adjustments of query plans:

» setprocess_limit_action allows you to abort batches or procedures when
runtime adjustments take place.

» showplan prints an adjusted query plan when runtime adjustments occur,
and showplan is effect.

Using set process_limit_action

174

Theprocess_limit_action option to the set command lets you monitor the use of
adjusted query plans at a session or stored procedure level. When you set
process_limit_action to “abort,” Adaptive Server recordserror 11015 and aborts
the query, if an adjusted query planisrequired. When you set
process_limit_action to “warning,” Adaptive Server recordserror 11014 but still
executes the query. For exampl e, this command aborts the batch when a query
isadjusted at runtime:

set process_limit_action abort

By examining the occurrences of errors 11014 and 11015 in the error log, you
can determine the degree to which Adaptive Server uses adjusted query plans
instead of optimized query plans. To remove the restriction and allow runtime
adjustments, use:

set process limit action quiet

See set in the Reference Manual: Commands for more information about
process_limit_action.

Adaptive Server Enterprise

CHAPTER 4 Parallel Query Processing

Using showplan

When you use showplan, Adaptive Server displays the optimized plan for a
given query before it runs the query. When the query plan involves parallel
processing, and aruntime adjustment is made, showplan displaysthis message,
followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN IS BEING USED FOR STATEMENT 1
BECAUSE NOT ENOUGH WORKER PROCESSES ARE CURRENTLY
AVAILABLE.

ADJUSTED QUERY PLAN:

Adaptive Server does not attempt to execute a query when the set noexec isin
effect, so runtime plans are never displayed while using this option.

Reducing the likelihood of runtime adjustments

To reduce the number of runtime adjustments, you must increase the number
of worker processesthat are availableto parallel queries. You can do thiseither
by adding more total worker processes to the system or by restricting or
eliminating parallel execution for noncritical queries, as follows:

e Useset parallel_degree to set session-level limits on the degree of
parallelism, or

* Usethe query-level parallel 1 and parallel N clauses to limit the worker
process usage of individual statements.

To reduce the number of runtime adjustmentsfor system procedures, recompile
the procedures after changing the degree of parallelism at the server or session
level. See sp_recompile in the Adaptive Server Reference Manual: Procedures
for more information.

Query Processing and Abstract Plans 175

Adaptive Server parallel query execution model

176 Adaptive Server Enterprise

CHAPTER 5

Controlling Optimization

This chapter describes query processing options that affect the query
processor’s choice of join order, index, 1/O size, and cache strategy.

Topic Page
Specia optimizing techniques 177
Specifying query processor choices 178
Asynchronous log service 189
Specifying table order in joins 179
Specifying the number of tables considered by the query processor | 181
Specifying an query index 182
Specifying 1/0 size in aquery 184
Specifying cache strategy 187
Controlling large I/O and cache strategies 189
Asynchronous log service 189
Enabling and disabling merge joins 193
Enabling and disabling join transitive closure 194
Suggesting a degree of parallelism for a query 195
Concurrency optimization for small tables 205

Special optimizing techniques

Being familiar with the information presented in the Performance and

Tuning: Basics guide helpsto understand the material in this chapter. Use
caution, asthetools allow you to override the decisions made by the
Adaptive Server query processor and can have an extreme negative effect

on performance if misused. You should understand the impact on the

performance of both your individual query and the possible implications

for overall system performance.

Query Processing and Abstract Plans

177

Specifying query processor choices

Adaptive Server's advanced, cost-based query processor produces excellent
query plans in most situations. But there are times when the query processor
does not choose the proper index for optimal performance or chooses a
suboptimal join order, and you need to control the access methods for the
query. The options described in this chapter allow you that control.

In addition, while you are tuning, you may want to see the effects of adifferent
join order, 1/0O size, or cache strategy. Some of these options let you specify
query processing or access strategy without costly reconfiguration.

Adaptive Server provides tools and query clauses that affect query
optimization and advanced query analysistoolsthat |et you understand why the
query processor makes the choices that it does.

Note Thischapter suggestsworkaroundsfor certain optimization problems. If
you experience these types of problems, please call Sybase Technical Support.

Specifying query processor choices

178

Adaptive Server lets you specify these optimization choices by including
commandsin aquery batch or in the text of the query:

* Theorder of tablesinajoin

» The number of tables evaluated at one time during join optimization
* Theindex used for atable access

* Thel/lOsize

» The cache strategy

* Thedegree of parallelism

In afew cases, the query processor failsto choose the best plan. In some of
these cases, the plan it choosesis only slightly more expensive than the “ best”
plan, so you need to weigh the cost of maintaining forced options against the
dlower performance of aless than optimal plan.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

The commandsto specify join order, index, 1/0 size, or cache strategy, coupled
with the query-reporting commandslike statistics io and showplan, can help you
determine why the query processor makes its choices.

Warning! Use the options described in this chapter with caution. The forced
query plans may be inappropriate in some situations and may cause very poor
performance. If you include these options in your applications, check query
plans, 1/0 gtatistics, and other performance dataregularly.

These options are generally intended for use as tools for tuning and
experimentation, not as long-term solutions to optimization problems.

Specifying table order in joins

Adaptive Server optimizesjoin ordersto minimize I/O. In most cases, the order
that the query processor chooses does not match the order of the from clauses
in your select command. To force Adaptive Server to accesstablesin the order
they arelisted, use:

set forceplan [on|off]

The query processor still chooses the best access method for each table. If you
use forceplan and specify ajoin order, the query processor may use different
indexes ontablesthan it would with adifferent table order, or it may not beable
to use existing indexes.

You might use this command as a debugging aid if other query analysistools
lead you to suspect that the query processor is not choosing the best join order.
Always verify that the order you are forcing reduces 1/0 and logical reads by
using set statistics io on and comparing /O both with and without forceplan.

If you use forceplan, your routine performance maintenance checks should
include verifying that the queries and procedures that use it still require the
option to improve performance.

You can include forceplan in the text of stored procedures.

set forceplan forces only join order, and not join type. There is no command for
specifying the join type; you can disable merge joins at the server or session
level.

You can disable hash joins at the session level. Also remember that an abstract
plan allows full plan specification, including join order and join types.

Query Processing and Abstract Plans 179

Specifying table order in joins

See Chapter 8, “ Creating and Using Abstract Plans,” for more information
about abstract plans.

See “Enabling and disabling merge joins’ on page 193 for more information
about merge joins.

Risks of using forceplan

Forcing join order has these risks:

Misuse can lead to extremely expensive queries. Always test the query
thoroughly with statistics io, and with and without forceplan.

It requires maintenance. You must regularly check queries and stored
proceduresthat include forceplan. Also, future versions of Adaptive Server
may eliminate the problems that lead you to incorporate index forcing, so
you should check all queries using forced query plans each time a new
version isinstalled.

Things to try before using forceplan
Before you use forceplan:

180

Check the showplan output to determine whether index keys are used as
expected.

Use dbcce traceon(302) or set option show normal to look for other
optimization problems.

Run update statistics on the index.

Use update statistics to add statistics for search arguments on unindexed
search clauses in the query, especially for search arguments that match
minor keysin compound indexes.

Use set option show_missing_stats on to look for column(s) that may need
statistics.

If the query joins more than four tables, use set table count to seeif it
resultsin an improved join order.

See " Specifying the number of tables considered by the query processor”
on page 181.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

Specifying the number of tables considered by the
query processor

Before version 15.0, Adaptive Server optimized joins by considering
permutations of two to four timesat atime. Inversion 15.0, the query processor
is not limited in this way when considering permutations. Instead, the new
search engine introduces a timeout mechanism to avoid excessive optimizing
time. Thetable count setting discussed later in this section still has an effect on
theinitia join order looked at by the search engine, and thus affects the final
join order when timeout does occur. If you suspect that an inefficient join order
is being chosen when the search engine times out, you can still usethe set table
count option to increase the number of tables that are considered, which will
affect theinitial join order considered by the search engine in starting the
permutation.

Adaptive Server optimizes joins by considering permutations of two to four
tables at atime. If you suspect that an inefficient join order is being chosen for
ajoin query, use the set table count option to increase the number of tablesthat
are considered at the same time. The syntax is:

set table count int_value
Valid values are 0 though 8; 0 restores the default behavior.
For example, to specify 4-at-a-time optimization, use:

set table count 4

dbcc traceon(310) reports the number of tables considered at atime. See“dbcc
traceon(310) and final query plan costs’ on page 189 in the Performance and
Tuning: Monitoring and Analyzing for Performance book for more
information.

Asyou decrease the value, you reduce the chance that the query processor will
consider all the possiblejoin orders. I ncreasing the number of tables considered
at one time during join ordering can greatly increase the time it takesto
optimize a query.

Since the time it takes to optimize the query isincreased with each additional
table, the set table count option ismost useful when the execution savingsfrom
improved join order outwei ghs the extra optimizing time. Some examples are;

e |f youthink that a more optimal join order can shorten total query
optimization and execution time, especially for stored proceduresthat you
expect to be executed many times once aplan isin the procedure cache

e When saving abstract plans for later use

Query Processing and Abstract Plans 181

Specifying an query index

Specifying an

182

Use statistics time to check parse and compile time and statistics io to verify that
the improved join order is reducing physical and logical 1/0.

If increasing the table count produces an improvement in join optimization, but
increases the CPU time unacceptably, rewrite the from clause in the query,
specifying the tables in the join order indicated by showplan output, and use
forceplan to run the query. Your routine performance maintenance checks
should include verifying that the join order you are forcing still improves
performance.

guery index

You can specify the index to use for a query using the (index index_name)
clause in select, update, and delete statements. You can also force a query to
perform atable scan by specifying the table name. The syntax is:

select select_list
from table_name [correlation_name]
(index {index_name | table_name })
[, table_name ...]
where ...

delete table_name
from table_name [correlation_name]
(index {index_name | table_name}) ...

update table_name set col_name = value
from table_name [correlation_name]
(index {index_name | table_name})...

For example:

select pub name, title
from publishers p, titles t (index date type)
where p.pub _id = t.pub id
and type = "business"
and pubdate > "1/1/93"

Specifying an index in aquery can be hel pful when you suspect that the query
processor is choosing a suboptimal query plan. When you use this option:

e Always check statistics io for the query to see whether the index you
choose requires less 1/0 than the query processor’s choice.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

Risks

Test afull range of valid valuesfor the query clauses, especialy if you are
tuning queries:

e Tuning queries on tables that have skewed data distribution

e Performing range queries, since the access methods for these queries

are sensitive to the size of therange

Use this option only after testing to be certain that the query performs better
with the specified index option. Once you include an index specification in a
query, you should check regularly to be surethat theresulting plan is still better
than other choices made by the query processor.

Note If aunclustered index has the same name as the table, specifying atable
name causes the unclustered index to be used. You can force atable scan using
select select_list from tablename (0).

Specifying indexes has these risks:

Changes in the distribution of data could make the forced index less
efficient than other choices.

Dropping the index means that all queries and procedures that specify the
index print an informational message indicating that the index does not
exist. The query is optimized using the best alternative access method.

Maintenance increases, since all queries using this option need to be
checked periodically. Also, future versions of Adaptive Server may
eliminate the problems that lead you to incorporate index forcing, so you
should check all queries using forced indexes each time you install a new
version.

The index must exist at the time the query using it is optimized. You
cannot create an index and then use it in a query in the same batch.

Things to try before specifying an index
Before specifying an index in queries:

Check showplan output for the “Keys are” message to be sure that the
index keys are being used as expected.

Query Processing and Abstract Plans 183

Specifying I/O size in a query

Use dbcc traceon(302) or set option show normal to look for other
optimization problems.

Run update statistics on the index.

If theindex isacomposite index, run update statistics on the minor keysin
the index, if they are used as search arguments. This can greatly improve
query processor cost estimates. Creating statistics for other columns
frequently used for search clauses can also improve estimates.

Use set option show_missing_stats on to look for column(s) that may need
statistics.

Specifying I/O size in a query

If your Adaptive Server isconfigured for large I/Osin the default data cache or
in named data caches, the query processor can decide to use large 1/0 for:

Queries that scan entire tables

Range queries using clustered indexes, such as queriesusing >, <, > x and
<Y, between, and like “charstring %"

Queriesthat scan alarge number of index leaf pages

If the cache used by the table or index is configured for 16K /O, asingle I/O
can read up to eight pages simultaneously. Each named data cache can have
several pools, each with adifferent 1/0O size. Specifying the 1/O sizein aquery
causesthe /O for that query to take placein the pool that is configured for that
size. See the System Administration Guide: Volume 2 for information on
configuring named data caches.

To specify an 1/0O size that is different from the one chosen by the query
processor, add the prefetch specification to theindex clause of a select, delete,
or update statement. The syntax is:

184

select select_list
from table_name
([index {index_name | table_name}]
prefetch size)
[, table_name ...]
where ...

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

delete table_name from table_name
([index {index_name | table_name}]
prefetch size)

update table_name set col_name = value
from table_name
([index {index_name | table_name}]
prefetch size)

Thevalid prefetch size depends on the page size. If no pool of the specified size
existsin the data cache used by the object, the query processor choosesthe best
available size.

If thereisaclustered index on au_Iname, this query performs 16K 1/O whileit
scans the data pages:

select *
from authors (index au names prefetch 16)
where au lname like "Sm%"

If aquery normally performs large I/O, and you want to check its1/0
performance with 2K 1/O, you can specify asize of 2K:

select type, avg(price)
from titles (index type price prefetch 2)
group by type

Note Referencetolargel/Osareona2K logical page size server. If you have
an 8K page size server, the basic unit for the 1/0is8K. If you have a 16K page
Size server, the basic unit for the 1/0O is 16K.

Index type and large 1/O size

When you specify an 1/0 size with prefetch, the specification can affect both
the data pages and the leaf-level index pages. Table 5-1 shows the effects.

Query Processing and Abstract Plans 185

Specifying I/O size in a query

Table 5-1: Access methods and prefetching

Access method Large I/O performed on
Table scan Data pages
Clustered index Data pages only, for allpages-locked tables

Data pages and leaf-level index pages for
data-only-locked tables

Nonclustered index Data pages and leaf pages of nonclustered index

showplan reports the 1/0 size used for both data and leaf-level pages.

See “1/0 Size Messages’ on page 112 in the book Performance and Tuning:
Monitoring and Analyzing for Performance for more information.

When prefetch specification is not followed

186

In most cases, when you specify an I/O size in aquery, the query processor
incorporates the 1/0 size into the query’s plan. However, there are times when
the specification cannot be followed, either for the query as awhole or for a
single, large 1/O request.

You cannot use large I/O for the query if:

» Thecacheisnot configured for 1/0 of the specified size. The query
processor substitutes the best size available.

* sp_cachestrategy has been used to disable large 1/0 for the table or index.
You cannot use large I/O for asingle buffer if:

» Any of the pagesincluded in that 1/O request are in another pool in the
cache.

» Thepageison thefirst extent in an allocation unit. This extent holds the
allocation page for the allocation unit, and only seven data pages.

* No buffersare available in the pool for the requested 1/0 size.

Whenever alarge I/O cannot be performed, Adaptive Server performs 2K 1/O
on the specific page or pagesin the extent that are needed by the query.

To determine whether the prefetch specification is followed, use showplan to
display the query plan and statistics io to see the results on 1/O for the query.
sp_sysmon reports on the large I/Os requested and denied for each cache.

See “Data cache management” in the book Performance and Tuning:
Monitoring and Analyzing for Performance.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

setting prefetch

By default, aquery useslarge 1/O whenever alarge 1/O pool is configured and
the query processor determines that large 1/O would reduce the query cost. To
disable large 1/0 during a session, Use:

set prefetch off
To reenable large 1/O, use:
set prefetch on

If large 1/O isturned off for an object using sp_cachestrategy, set prefetch on
does not override that setting.

If large /O isturned off for asession using set prefetch off, you cannot override
the setting by specifying a prefetch size as part of aselect, delete, or insert
Statement.

The set prefetch command takes effect in the same batch in which it isrun, so
you canincludeit in astored procedure to affect the execution of the queriesin
the procedure.

Specifying cache strategy

For queries that scan atable’s data pages or the leaf level of an unclustered
index (covered queries), the Adaptive Server query processor chooses one of
two cache replacement strategies: the fetch-and-discard (MRU) strategy or the
LRU strategy.

See“ Overview of cache strategies’” on page 174 in the book Performance and
Tuning: Basics for more information about these strategies.

The query processor may choose the MRU strategy for:

e Any query that performstable scans.

« A range query that uses a clustered index.

e A covered query that scans the leaf level of a nonclustered index.

e Aninner table in anested-loop join, if the inner table is larger than the
cache.

e The outer table of a nested-loop join, since it needs to be read only once.

* Bothtablesin aMergeJoin.

Query Processing and Abstract Plans 187

Specifying cache strategy

To affect the cache strategy for objects:
e Specify Iru or mru in aselect, update, or delete statement
e Usesp_cachestrategy to disable or reenable the mru strategy

If you specify MRU strategy, and apageis already in the data cache, the page
isplaced at the MRU end of the cache, rather than at the wash marker.

Specifying the cache strategy affects only data pages and the leaf pages of
indexes. Root and intermediate pages always use the LRU strategy.

In select, delete, and update statements

You can use Iru or mru (fetch-and-discard) in a select, delete, or update
command to specify the I/O size for the query:

select select_list
from table_name
(index index_name prefetch size [Iru|mru])
[, table_name ...]
where ...

delete table_name from table_name (index index_name
prefetch size [Iru|mru]) ...

update table_name set col_name = value
from table_name (index index_name
prefetch size [lrujmru]) ...

This query adds the LRU replacement strategy to the 16K 1/0 specification:

select au_ lname, au_ fname, phone
from authors (index au names prefetch 16 lru)

For moreinformation about specifying aprefetch size, see” Specifying 1/0 size
inaquery” on page 184.

188 Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

Controlling large 1/0 and cache strategies

Status bitsin the sysindexes table identify whether atable or an index should
be considered for large 1/0O prefetch or for MRU replacement strategy. By
default, both are enabled. To disable or re-enable these strategies, use
sp_cachestrategy. The syntax is.

sp_cachestrategy dbname , [ownername.]tablename
[, indexname | "text only" | "table only"
[, { prefetch | mru }, { "on" | "off"}]]

This command turns off the large I/O prefetch strategy for the au_name_index
of the authors table:

sp_cachestrategy pubtune, authors, au name index,
prefetch, "off"

This command re-enables MRU replacement strategy for the titles table:

sp_cachestrategy pubtune, titles, "table only",
mru, "on"

Only aSystem Administrator or the object owner can change or view the cache
strategy status of an object.

Getting information on cache strategies

To see the cache strategy that isin effect for a given object, execute
sp_cachestrategy, with the database and object name:

sp_cachestrategy pubtune, titles
object name index name large IO MRU

titles NULL ON ON

showplan output shows the cache strategy used for each object, including
worktables.

Asynchronous log service

AL S increases scalability in Adaptive Server and provides higher throughput
in logging subsystems for high-end symmetric multiprocessor systems.

Query Processing and Abstract Plans 189

Asynchronous log service

Enabling ALS

Issuing a checkpoint

Disabling ALS

Displaying ALS

190

You cannot use AL Sif you havefewer than 4 engines. If you try to enable ALS
with fewer than 4 online engines an error message appears.

You can enable, disable, or configure ALS using the sp_dboption stored
procedure.

sp_dboption <db Name>, "async log service',
"true|false"

After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "mydb", "async log service", "true"
use mydb
checkpoint

You can use the checkpoint to identify the one or more databases or use an all
clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Before you disable AL S, make sure there are no active usersin the database. If
there are, you receive an error message when you issue the checkpoint:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Error 3647: Cannot put database in single-user mode.
Wait until all users have logged out of the database and
issue a CHECKPOINT to disable "async log service'.

If there are no active users in the database, this example disables ALS

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

You can see whether ALS is enabled in a specified database by checking
sp_helpdb.

sp_helpdb "mydb"

mydb 3.0 MB sa 2
July 09, 2002
select into/bulkcopy/pllsort, trunc log on chkpt,
async log service

For more information on these stored procedures, see “ Changed system
procedures’ on page 193.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

Understanding the user log cache (ULC) architecture

Adaptive Server’slogging architecture features the user log cache, or ULC, by
which each task ownsits own log cache. No other task can write to this cache,
and the task continues writing to the user log cache whenever a transaction
generates alog record. When the transaction commits or aborts, or the user log
cacheisfull, the user log cacheis flushed to the common log cache, shared by
all the current tasks, which is then written to the disk.

Flushing the UL C isthefirst part of acommit or abort operation. It requiresthe
following steps, each of which can cause delay or increase contention:

1 Obtaining alock on the last log page.
2 Allocating new log pages if necessary.
3 Copying the log records from the UL C to the log cache.

The processes in steps 2 and 3 require you to hold alock on the last log
page, which prevents any other tasks from writing to the log cache or
performing commit or abort operations.

4 Flush the log cacheto disk.

Step 4 requires repeated scanning of the log cacheto i ssue write commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which thelog is bound. Under alarge transaction load, contention on this
spinlock can be significant.

When to use ALS

You can enable AL S on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more online
engines:

* Heavy contention on the last log page.

You can tell that the last log pageisunder contention when the sp_sysmon
output in the Task Management Report section shows asignificantly high
value. For example:

Query Processing and Abstract Plans 191

Asynchronous log service

Table 5-2: Log page under contention

Task

Management per sec per xact count % of total
Log Semaphore 58.0 0.3 34801 73.1
Contention

Using the ALS

ULC flusher

192

e Underutilized bandwidth in the log device.

Note You should use ALS only when you identify a single database with high
transaction requirements, since setting AL S for multiple database may cause
unexpected variations in throughput and response times. If you want to
configure ALS on multiple databases, first check that throughput and response
times are satisfactory.

Two threads scan the dirty buffers (buffers full of data not yet written to the
disk), copy the data, and write it to the log. These threads are:

» TheUser Log Cache (ULC) flusher
* Thelog Writer

The ULC flusher is a system task thread that is dedicated to flushing the user
log cache of atask into the general log cache. When atask is ready to commit,
the user enters acommit request into the flusher queue. Each entry has a
handle, by which the ULC flusher can access the UL C of the task that queued
the request. The UL C flusher task continuously monitors the flusher queue,
removing regquests from the queue and servicing them by flushing ULC pages
into the log cache.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

Log writer

Changed system

Once the UL C flusher has finished flushing the UL C pagesinto the log cache,
it queues the task request into awakeup queue. The log writer patrolsthe dirty
buffer chainin the log cache, issuing awrite command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are all written to disk.
Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

procedures

Two stored procedures are changed to enable AL S:

* sp_dboption adds an option that enables and disables ALS.
e sp_helpdb adds a columnto display ALS.

For more general information about these stored procedures, see the Reference
Manual.

Enabling and disabling merge joins

By default, merge joins are enabled, at the server level, for allrows mix and for
allrows_dss optgoal, and are disabled at the server level for other optgoals,
including allrows_oltp. When merge joins are disabled, the server only costs
other join types that are not disabled. To enable merge joins server-wide, set
enable merge join to 1. The pre-version 15.0 configuration enable sort-merge
joins and JTC does not affect the new query processor.

The command set merge_join on overrides the server level to allow use of
merge joinsin a session or stored procedure.

To enable merge joins, use:
set merge join on

To disable merge joins, use:
set merge join off

For information on configuring merge joins server-wide, see the System
Administration Guide.

Query Processing and Abstract Plans 193

Enabling and disabling hash joins

Enabling and disabling hash joins

By default, hash joins are enabled only at allrows_dss optgoal. To override the
server level to allow use of hash join in a session or stored procedure, use set
hash_join on.

To enable hash joins, use:
set hash join on
To disable hash joins, use:

set hash join off

Enabling and disabling join transitive closure

194

With version 15.0, join transitive closure is always on and cannot be disabled.
The search engine uses the timeout mechanism to avoid excessive optimization
time. Although this setting no longer affectsthe actual use of transitive closure
for the new query processor, it can still affect the initial join order that the
search engine begins the permutation with when the timeout occurs. Thus, the
following discussion is still useful when you suspect that a suboptimal join
order is being chosen at timeout.

By default, join transitive closure is not enabled at the server level, sinceit can
increase optimization time. You can enable join transitive closure at a session
level with set jtc on. The session-level command overrides the server-level
setting for the enable sort-merge joins and JTC configuration parameter.

For queries that execute quickly, even when several tables are involved, join
transitive closure may increase optimization time with little improvement in
execution cost. For example, with join transitive closure applied to this query,
the number of possible joinsis multiplied for each added table;

select * from tl, t2, t3, t4, ... tN
where tl.cl = t2.cl

and tl.cl = t3.cl

and tl.cl = t4.cl

and tl.cl tN.cl

For joins on very large tables, however, the additional optimization time
involved in costing the join orders added by join transitive closure may result in
ajoin order that greatly improves the response time.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

You can use set statistics time to see how long it takes to optimize the query. If
running queries with set jtc on greatly increases optimization time, but also
improves query execution by choosing a better join order, check the showplan
or dbcce traceon(302, 310) output. Explicitly add the useful join orders to the
query text. You can run the query without join transitive closure, and get the
improved execution time, without the increased optimization time of
examining all possible join orders generated by join transitive closure.

You can also enable join transitive closure and save abstract plans for queries
that benefit. If you then execute those queries with loading from the saved
plans enabled, the saved execution plan is used to optimize the query, making
optimization time extremely short.

See Performance and Tuning: Optimizer and Abstact Plans for more
information on using abstract plans and configuring join transitive closure
server-wide.

Suggesting a degree of parallelism for a query

Theparallel and degree_of parallelismextensionsto the from clause of aselect
command allow usersto restrict the number of worker processes used in ascan.

For aparallel partition scan to be performed, the degree_of parallelism must
be equal to or greater than the number of partitions. For a parallel index scan,
specify any value for the degree_of parallelism.

The syntax for the select statement is:

select...
[from {tablename}

[(index index_name
[parallel [degree_of parallelism | 1]]
[prefetch size] [Irujmru])],

{tablename} [([index_name]
[parallel [degree_of parallelism | 1]

[prefetch size] [Iru|mru])] ...

Table 5-3 shows how to combine the index and parallel keywords to obtain
serial or parallel scans.

Query Processing and Abstract Plans 195

Suggesting a degree of parallelism for a query

196

Table 5-3: Optimizer hints for serial and parallel execution

To specify this type of scan: Use this syntax:

Parallel partition scan (index tablename parallel N)
Parallel index scan (index index_name parallel N)
Serial table scan (index tablename parallel 1)
Seria index scan (index index_name parallel 1)

Parallel, with the choice of tableor (parallel N)
index scan left to the optimizer

Serial, with the choice of table or (parallel 1)
index scan left to the optimizer

When you specify the parallel degree for atablein amergejoin, it affects the
degree of parallelism used for both the scan of the table and the merge join.

You cannot use the parallel option if you have disabled parallel processing
either at the session level with the set parallel_degree 1 command or at the
server level with the parallel degree configuration parameter. The parallel
option cannot override these settings.

If you specify adegree of parallelismthat is greater than the maximum
configured degree of parallelism, Adaptive Server ignores the hint.

The optimizer ignores hints that specify a parallel degree if any of the
following conditionsis true;

* Thefrom clauseis used in the definition of a cursor.

e parallel isused in the from clause of aninner query block of asubquery, and
the optimizer does not move the table to the outermost query block during
subquery flattening.

» Thetableisaview, asystem table, or avirtual table.
e Thetableistheinner table of an outer join.
e The query specifies exists, min, or max on the table.

» Thevaluefor the max scan parallel degree configuration parameter is set
tol.

« Anunpartitioned clustered index is specified or isthe only parallel option.
* A nonclustered index is covered.
e Thequery isprocessed using the OR strategy.

» The select statement is used for an update or insert.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

Query level parallel clause examples

To specify the degree of parallelism for asingle query, include parallel after the
table name. This example executesin serial:

select * from titles (parallel 1)

This example specifiestheindex to be used in the query, and sets the degree of
paraleismto 5:

select * from titles
(index title id clix parallel 5)
where ...

To force atable scan, use the table name instead of the index name.

Optimization goals

Adaptive Server lets you choose a query optimization goal that best suitsyour
query environment. The four optimization goals are:

e fastfirstrow —optimizes queries so that Adaptive Server returnsthefirst few
rows as quickly as possible.

e allrows_oltp —optimizes queries so that Adaptive Server uses alimited
number of optimization criteria (described in “Optimization criterid’ on
page 199) to find agood query plan. allrows_oltp is most useful for purely
OLTP queries.

e allrows_mixed — optimizes queries so that Adaptive Server uses most
available optimization techniques, including merge_join and parallel, to
find the best query plan. allrows_mixed, which is the default strategy, is
most useful in a mixed-query environment.

e allrows_dss — optimizes queries so that Adaptive Server usesall available
optimization techniquesto find the best query plan, including hash join,
advanced aggregates processing, and bushy tree plan. allrows_dss is most
useful in a DSS environment.

Query Processing and Abstract Plans 197

Optimization goals

Setting optimization goals

At the server level

At the session level

At the query level

You can set the optimization goal at the server, session, or query level. The
server-level optimization goal is overridden at the session level, whichis
overridden at the query level—making it possible to set a different
optimization goal at each level.

To set the optimization goal at the server level, you can;
e Usethe sp_configure command

* Modify the optimization goal configuration parameter in the Adaptive
Server configuration file

For example, to set the optimization level for the server to fastfirstrow, enter:
sp_configure "optimization goal", 0, "fastfirstrow"

To set the optimization goal at the session level, use set plan optgoal. For
example, to modify the optimization goal for the session to allrows, enter:

set plan optgoal allrows oltp
To verify the current optimization goal at the session level, enter:
select @@optgoal

To set the optimization goal at the query level, use the select or other DML
command. For example, to change the optimization goal to allrows_oltp for the
current query, enter:

select * from A order by A.a plan " (use optgoal allrows oltp)"

At the query level only, you can specify the number of rows that Adaptive
Server will return quickly when you set fastfirstrow as the optimization goal.
For example, enter:

select * from A order by A.a plan " (use optgoal fastfirstrow 5)"

Some exceptions

198

In general, you can set query-level optimization goals using select, update, and
delete statements. However:

e You cannot set query-level optimization goalsin pureinsert statements,
although you can set optimization goalsin select ... insert statements.

e fastfirstrow is relevant only for select statements; it incurs an error when
used with other DML statements.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

Optimization criteria

Setting optimization
criteria

Criteria descriptions

You can set specific optimization criteriafor each session. The optimization
criteriarepresent specific algorithms or relational techniques that may or may
not be considered when Adaptive Server creates a query plan. By setting
individual optimization criteria on or off, you can fine-tune the query plan for
the current session.

Note Each optimization goal has default settings for each optimization
criterion. Resetting optimization criteriamay interfere with the default settings
of the current optimization goal and produce an error message—although
Adaptive Server will honor the new setting.

Sybase recommends that you set individual optimization criteria only rarely
and with caution if it is necessary to fine-tune a particular query. Overriding
optimization goal settingsin this way can overly complicate query
administration. Always set optimization criteria after setting any existing
session level optgoal setting; an explicit optgoal setting could return an
optimization criteriato its default value.

See “Default optimization criterid” on page 201 for more information.

Use the set command to enable or disable individual criteria.
For example, to enable the hash join algorithm, enter:
set hash join 1
To disable the hash join algorithm, enter:
set hash join 0
To enable one option and disable another, enter:
set hash join 1, merge join 0

Most criteriadescribed here decideswhether aparticular query engine operator
can be used in the final plan chosen by the optimizer.

The optimization criteriaare:

e hash_join —determines whether the Adaptive Server query processor may
use the hash join algorithm. Hash joins may consume more runtime
resources, but are valuable when the joining columns do not have useful
indexes or when arelatively large number of rows satisfy thejoin
condition, compared to the product of the number of rowsin the joined
tables.

Query Processing and Abstract Plans 199

Optimization criteria

200

hash_union_distinct — determines whether the query processor may usethe
hash union distinct algorithm, which is not efficient if most rows are
distinct.

merge_join — determines whether the Adaptive Server query processor
may use the merge join algorithm, which relies on ordered input.
merge_join is most valuable when input is ordered on the merge key—for
example, from an index scan. merge_join islessvaluable if sort operators
are required to order input.

merge_union_all — determines whether the Adaptive Server query
processor may use the merge algorithm for union all. merge_union_all
maintains the ordering of the result rows from the union input.
merge_union_all isparticularly valuableif theinput is ordered and a parent
operator (such as merge join) benefits from that ordering. Otherwise,
merge_union_all may require sort operators that reduce efficiency.

merge_union_distinct — determines whether the query processor may use
the merge algorithm for union. merge_union_distinct is similar to
merge_union_all, except that duplicate rows are not retained.
merge_union_distinct requires ordered input and provides ordered output.

multi_table_store_ind — determines whether the query processor may use
reformatting on the result of amultiple table join. Using
multi_gt_store_ind may increase the use of worktables.

nl_join —determines whether the Adaptive Server query processor may use
the nested-loop-join algorithm.

opportunistic_distinct_view — determines whether the query processor may
use amore flexible algorithm when enforcing distinctness.

parallel_query — determines whether the Adaptive Server query processor
may use parallel query optimization.

store_index — determines whether the query processor may use
reformatting, which may increase the use of worktables.

append_union_all — determines whether the query processor may use the
append union all algorithm.

bushy_search_space — determines whether the query processor may use
bushy-tree-shaped query plans, which may increase the search space, but
provide more query plan options to improve performance.

distinct_hashing — determines whether the query processor may use a
hashing algorithm to eliminate duplicates, which is very efficient when
there are few distinct values compared to the number of rows.

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

Default optimization
criteria

distinct_sorted — determines whether the Adaptive Server query processor
may use a single-pass algorithm to eliminate duplicates. distinct_sorted
relies on an ordered input stream, and may increase the number of sort
operatorsif itsinput is not ordered.

group-sorted — determines whether the query processor may use an on-the-
fly grouping al gorithm. group-sorted relies on aninput stream sorted onthe
grouping columns, and it preserves this ordering in its output.

distinct_sorting — determines whether the Adaptive Server query processor
may use the sorting algorithm to eliminate duplicates. distinct_sorting is
useful when theinput isnot ordered (for example, if thereisno index) and
the output ordering generated by the sorting algorithm could benefit; for
example, in amerge join.

group_hashing — determines whether the query processor may use agroup
hashing algorithm to process aggregates.

index_intersection — determines whether the query processor may use the
intersection of multipleindex scans as part of the query planin the search
space.

The query processor will re-enable a default algorithm if al the algorithms of
arelational operator are disabled. For example, if al join agorithms (nl_join,

m_join, and h_join) are disabled, the query processor will enable nl_join.

The query processor can a so re-enable nl_join for semantic reasons: for

example, if the joining tables are not connected through equijoins.

Each optimization goal —fastfirstrow, allrows_oltp, allrows_mixed, allrows_dss —
has a default setting (on or off) for each optimization criterion. For example,

the default setting for merge_join is off for fastfirstrow and allrows_oltp, and on
for allrows_mixed and allrows_dss. See Table 5-4 for alist of default settingsfor
each optimization criteria.

Sybase recommends that you reset the optimization goal and evaluate
performance before changing optimization criteria. Change optimization
criteriaonly when necessary to fine-tune a particular query.

Table 5-4: Default settings for optimization criteria

Optimization
criteria fastfirstrow allrows_oltp allrows_mixed allrows_dss
append_union_all 1 1 1 1
bushy search_space 0 0 0 1
distinct_sorted 1 1 1 1
distinct_sorting 1 1 1 1

Query Processing and Abstract Plans 201

Limiting optimization time

Optimization
criteria fastfirstrow allrows_oltp allrows_mixed allrows_dss
1

group_hashing 1 1

group_sorted

hash_join

hash_union_distinct

index_intersection

merge_join

merge_union_all

multi_gt_store_ind

nl_join

opp_distinct_view

parallel_query

RlR|Rr|Rr okl ololr|lolkr
Rlo|lr|kr|lo|lrlololr|lolkr
PlRlr|r|lo|lr|r|o|lr|o|r| k|
RPlRRPr R RPRPRIRPRP PP

store_index

Limiting optimization time

You can use the optimization timeout limit configuration parameter to restrict the
amount of time Adaptive Server spends optimizing a query. optimization
timeout limit specifiesthe amount of time Adaptive Server can spend optimizing
aquery as a percentage of the total time spent processing the query.

Thetimeout is activated only if:
e At least one complete plan has been retained as the best plan, and
» The optimization timeout limit has been exceeded.

Set optimization timeout limit at the server level using sp_configure. For example,
to limit optimization time to 10 percent of total query processing time, enter:

sp_configure “optimization timeout limit”, 10
To set optimization timeout limit at the session level, use:

set plan optimeoutlimit n
This command overrides the server setting.

The default value is 10 percent; you can specify any value from 1 to 1000.

202 Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

At the server level, there is a separate configuration, sproc optimize timeout
limit, for the server level default timeout value within stored procedure
compilations. The default value is 40 percent; you can specify any value from
1 to 4000.

For more information about optimization timeout limit, see the chapter “ Abstract
Plans” in the Query Processor guide.

Controlling parallel optimization

Thegoal of executing queriesin parallel isto get thefastest responsetime, even
if it involves more total work from the server.

To enable and control parallel processing, Adaptive Server provides four
configuration parameters:

¢ number of worker processes
* max parallel degree

* max resource granularity

* max repartition degree

With the exception of number of worker processes, each of these parameters can
be set at the server and the session level. To view the current session-level
value of aparameter, use the select command. For example, to view the current
value of max resource granularity, enter:

select @@resource granularity

Note When set or viewed at the session level, these parameters do not include
“ maX.H

Specifying the maximum number of worker processes

Use number of worker processes to specify the maximum number of worker
processes that Adaptive Server can use at any one time for all simultaneously
running parallel queries.

Query Processing and Abstract Plans 203

Controlling parallel optimization

number of worker processes is a server-wide configuration parameter only; use
sp_configure to set the parameter. For example, to set the maximum number of
worker processes to 200, enter:

sp_configure “number of worker processes”, 200

Specifying the number of worker processes available for parallel

processing

Use max parallel degree to specify the maximum number of worker processes
allowed per query. You can configure max parallel degree at the server or the
session level.

For example, to set max parallel degree to 60 at the server level, enter:
sp_configure “max parallel degree”, 60

To set max parallel degree to 60 at the session level, enter:
set parallel degree 60

The value of max parallel degree must be equal to or lessthan the current value
of number of worker processes. Setting max parallel degree to 1 turnsoff parallel
processing—Adaptive Server scans all tables and indexes serially. To enable
parallel partition scans, set this parameter equal to or greater than the number
of partitionsin the table you are querying.

Specifying the percentage of resources available to process a

query

204

Use max resource granularity to specify the percentage of total memory that
Adaptive Server can allocate to asingle query. You can set the parameter at the
server or session level.

For example, to set max resource granularity to 35 percent at the server level,
enter:

sp_configure “max resource granularity”, 35
To set max resource granularity to 35 percent at the session level, enter:

set resource granularity 35

Adaptive Server Enterprise

CHAPTER 5 Controlling Optimization

Thevalueof thisparameter can affect the query optimizer’s choice of operators
for aquery. If max resource granularity is set low, many hash- and sort-based
operators cannot be chosen. max resource granularity al so affectsthe scheduling
algorithm.

Specifying the number of worker processes available to partition a

data stream

Use max repartition degree to suggest a number of worker processes that the
guery processor can use to partition a data stream. You can set max repartition
degree at the server or query level.

Note The value of max repartition degree is a suggestion only; the query
processor decides the optimal number.

max repartition degree is most useful when the tables being queried are not
partitioned, but partitioning the resultant data stream may improve
performance by allowing concurrent SQL operations.

For example, to set max repartition degree to 15 at the server level, enter:
sp_configure “max repartition degree”, 15

To set max repartition degree to 15 at the session level, enter:
set repartition degree 15

The value of max repartition degree must not exceed the current value of max
parallel degree. Sybase recommends that you set the value of this parameter
equal to or less than the number of CPUs or disk systems that can work in
paralel.

Concurrency optimization for small tables

For data-only-locked tables of 15 pages or fewer, Adaptive Server does not
consider atable scan if thereis a useful index on the table. Instead, it always
chooses the cheapest index that matches any search argument that can be
optimized in the query. The locking required for an index scan provides higher
concurrency and reduces the chance of deadlocks, athough slightly more 1/0O
may be required than for atable scan.

Query Processing and Abstract Plans 205

Concurrency optimization for small tables

If concurrency on small tablesisnot anissue, and you want to optimizethe 1/0O
instead, you can disabl e this optimization with sp_chgattribute. This command
turns off concurrency optimization for atable:

sp_chgattribute tiny lookup table,
“concurrency opt threshold”, 0

With concurrency optimization disabled, the query processor can choose table
scans when they require fewer 1/0s.

You can also increase the concurrency optimization threshold for atable. This
command sets the concurrency optimization threshold for a table to 30 pages:

sp_chgattribute lookup table,
“concurrency_ opt_threshold”, 30

The maximum value for the concurrency optimization threshold is 32,767.
Setting the value to -1 enforces concurrency optimization for a table of any
size. It may be useful in caseswhere atable scan ischosen over indexed access,
and the resulting locking results in increased contention or deadlocks.

The current setting is stored in systabstats.conopt_thld and is printed as part of
optdiag output.

Changing locking scheme

206

Concurrency optimization affects only data-only-locked tables. Table 5-5
shows the effect of changing the locking scheme.

Table 5-5: Effects of alter table on concurrency optimization settings

Changing locking scheme from Effect on stored value
Allpages to data-only Set to 15, the default
Data-only to allpages Setto 0

One data-only scheme to another Configured value retained

Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve
Performance

Accurate statistics are essential to query optimization. In some cases,
adding statisticsfor columnsthat are not |eading index keysal so improves
query performance. This chapter explains how and when to use the
commands that manage statistics.

Topic Page
Statistics maintained in Adaptive Server 207
Importance of statistics 208
Updating statistics 209
update statistics commands 210
Automatically updating statistics 213
Configuring automatic update statistics 216
Column statistics and statistics maintenance 219
Creating and updating column statistics 221
Choosing step numbers for histograms 225
Scan types, sort requirements, and locking 226
Using the delete statistics command 229
When row counts may be inaccurate 230

Statistics maintained in Adaptive Server

These key optimizer statistics are maintained in Adaptive Server:

e Statistics per partition: table row count; table page count. An
unpartitioned table is considered to have one partition for the
purposes of the systabstats catalog. Can be found in systabstats.

e Statistics per index: index row count; index height; index leaf page
count. A local index has a separate systabstats row for each index
partition. A global index, whichisconsidered apartitioned index with
one partition, has one systabstats row. Can be found in systabstats.

Query Processing and Abstract Plans 207

Importance of statistics

Definitions

Density

Histogram

e Statistics per column: data distribution. Can be found in sysstatistics.

e Statistics per group of columns: density information. Can be found in
sysstatistics.

e Statistics per partition

e Column statistics: data distribution per column; density per group of
columns. Can be found in sysstatistics.

These definitions will help you to understand the material in this chapter.

Density is a statistical measurement of the uniqueness of a given column’s
values.

A histogram is a statistical representation of the distribution of values of a
given column of the relation.

Importance of statistics

208

The Adaptive Server cost-based optimizer uses statistics about the tables,
indexes, partitions, and columns named in a query to estimate query costs. It
chooses the access method that the optimizer determines hastheleast cost. But
this cost estimate cannot be accurate if statistics are not accurate.

Some statistics, such as the number of pages or rowsin atable, are updated
during query processing. Other statistics, such as the histograms on columns,
are updated only when update statistics runs or when indexes are created.

If your query is performing slowly and you seek help from Technical Support
or a Sybase newsgroup on the Internet, one of the first questionsyou arelikely
be asked is "Did you run update statistics?' You can use the optdiag command
to see when update statistics was last run for each column on which statistics
exist:

Last update of column statistics: Aug 31 2004
4:14:17:180PM

Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

Another command you may need for statistics maintenance is delete statistics.
Dropping an index does not drop the statistics for that index. If the distribution
of keysin the columns changes after the index is dropped, but the statistics are
still used for some queries, the outdated statistics can affect query plans.

Histogram statistics from a global index are more accurate than histogram
statistics generated by alocal index. For alocal index, the statistics are created
on each partition, and are then merged to create a global histogram using
guesses as to how overlapping histogram cells from each partition should be
combined. With a global index, the merge step, with merging estimates, does
not occur. In most cases, thereisno issue with update statistics on alocal index.
However, if there are significant estimation errorsin queriesinvolving
partitioned tables, histogram accuracy can be improved by creating and
dropping a global index on acolumn rather than updating the statisticson a
local index.

Updating statistics

The update statistics command updates column-related statistics such as
histograms and densities. Statistics must be updated on those columns where
the distribution of keysin the index changes in ways that affect the use of
indexes for your queries.

Running update statistics requires system resources. Like other maintenance
tasks, it should be scheduled at times when the load on the server islight. In
particular, update statistics requires table scans or leaf-level scans of indexes,
may increase |/O contention, may use the CPU to perform sorts, and uses the
data and procedure caches. Use of these resources can adversely affect queries
running on the server if you run update statistics when usage is high.

Using the sampling feature can reduce resource requirements and allow more
flexibility when running this task.

In addition, some update statistics commands require shared locks, which can
block updates. See “ Scan types, sort requirements, and locking” on page 226
for more information.

You can also configure Adaptive Server to automatically run update statistics
at times that have minimal impact on the system resources. For more
information, see “ Automatically updating statistics’ on page 213.

Query Processing and Abstract Plans 209

Updating statistics

Adding statistics for unindexed columns

When you create an index, a histogram is generated for the leading column in
the index. Examplesin earlier chapters have shown how statistics for other
columns can increase the accuracy of optimizer statistics.

You should consider adding statistics for virtually al columnsthat are
frequently used as search arguments, as long as your maintenance schedule
allows time to keep these statistics up to date.

In particular, adding statistics for minor columns of composite indexes can
greatly improve cost estimates when those columns are used in search
arguments or joins along with the leading index key.

update statistics commands

The update statistics commands create statistics if there are no statistics for a
particular column, or replaces existing statistics. The statistics are stored in the
system tables systabstats and sysstatistics. The syntax is:

update statistics table_name

[[partition data_partition_name] [(column_list)] |
index_name [partition index_partition_name]]

[using step values |

[with consumers = consumers] [, sampling=percent]

update index statistics
table_name [[partition data_partition_name] |
[index_name [partition index_partition_name]]]
[using step values |
[with consumers = consumers] [, sampling=percent]

update all statistics table_name
[partition data_partition_name]
[sp_configure histogram tuning factor, <value>

update table statistics
table_name [partition data_partition_name]

delete [shared] statistics table_name
[partition data_partition_name]
[(column_name][, column_name] ...)]

e For update statistics:

e table name-—generatesstatisticsfor theleading columnin each index
on thetable.

210 Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

e table nameindex_name — generates statistics for al columns of the
index.

e partition_name — generates statistics for only this partition.

e partition_nametable_name (column_name) — generates statistics for
this column of this table on this partition.

e table_name (column_name) — generates statistics for only this
column.

e table_name(column_name, column_name...) —generates ahistogram
for the leading column in the set, and multicolumn density valuesfor
the prefix subsets.

e using step values—identifies the number of stepsused. The defaultis
20 steps. To change the default number of steps, use sp_configure.

e sampling = percent — the numeric value of the sampling percentage,
such as 05 for 5%, 10 for 10%, and so on. The sampling integer is
between zero (0) and one hundred (100).

¢ For update index statistics:

e table name—generates statisticsfor all columnsin all indexes onthe
table.

e partition_nametable name—generatesstatisticsfor al columnsinall
indexes for the table on this partition.

e table nameindex_name — generates statistics for all columnsin this
index.

¢ For update all statistics:
e table name— generates statistics for all columns of atable.

e table_name partition_name— generates statistics for all columns of a
table on a partition.

e using step values—identifies the number of stepsused. The defaultis
20 steps. To change the default number of steps, use sp_configure.

A new option in sp_configure is histogram tuning factor, which allows
superior selection of the number of histogram steps. Thedefault value
for histogram tuning factor is 20. See the System Administration Guide
for information about sp_configure.

Query Processing and Abstract Plans 211

Updating statistics

Using sampling for update statistics

212

The optimizer for Adaptive Server usesthe statistics on adatabaseto set up and
optimize queries. To generate optimal results, the statistics must be as current
as possible.

Run the update statistics commands against data sets, such astables, to update
information about the distribution of key valuesin specified indexes or
columns, for al columnsin an index, or for al columnsin atable. The
commands revise histograms and density values for column-level statistics.
The results are then used by the optimizer to calcul ate the best way to set up a
query plan.

update statistics requires table scans or leaf-level scans of indexes, may
increase /O contention, may use the CPU to perform sorts, and uses data and
procedure caches. Use of these resources can adversely affect queries running
on the server if you run update statistics when usageis high. In addition, some
update statistics commands require shared locks, which can block updates.

To reduce 1/0 contention and resources, run update statistics using a sampling
method, which can reduce the I/O and time when your maintenance window is
small and the data set islarge. If you are updating alarge data set or table that
isin constant use, being truncated and repopulated, you may want to do a
statistical sampling to reduce the time and the size of the 1/0O. Because
sampling does not update the density values, run afull update statistics prior to
using sampling for an accurate density value.

Use caution with sampling since the results are not fully accurate. Balance
changes to histogram values against the savingsin 1/O.

Sampling does not update the density if it was previously created by a non-
sampling update statistics command. Since the density changes very slowly,
replacing an accurate density with an approximation calculated by sampling
usually does not improvethe estimate. If the density was created by asampling
update statistics command, then it is updated. It is recommended that one non-
sampling update statistics command is used to establish an accurate density,
which can be followed by numerous sampling update statistics commands. In
order to have sampling update statistics update the density, you must delete the
column statistics before using update statistics with sampling.

When you are deciding whether or not to use sampling, consider the size of the
data set, the time constraints you are working with, and if the histogram
produced is as accurate as needed.

Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

The percentage to use when sampling depends on your needs. Test various
percentages until you receive aresult that reflects the most accurate
information on a particular data set.

Example:
update statistics authors(auth id) with sampling = 5 percent
The server-wide sampling percent can be set using:
sp_configure 'sampling percent', 5

This command sets a server-wide sampling of 5% for update statistics that
allows you to do the update statistics without the sampling syntax. The
percentage can be between zero (0) and one hundred (100) percent.

Automatically updating statistics

The Adaptive Server cost-based query processor uses statistics for the tables,

indexes, and columns named in aquery to estimate query costs. Based on these
statistics, the query processor chooses the access method it determines hasthe
least cost. However, this cost estimate cannot be accurate if the statisticsare not
accurate. You can run update statistics to ensure that the statistics are current.

However, running update statistics has an associated cost because it consumes
system resources such as CPU, buffer pools, sort buffers, and procedure cache.

Instead of manually running update statistics at a certain time, you can set
update statistics to run automatically when it best suits your site and avoid
runningit at timesthat hamper your system. The best timefor you to run update
statistics is based on the feedback from the datachange function. datachange
also helpsto ensure that you do not unnecessarily run update statistics. You can
use these templates to determine the objects, schedules, priority, and
datachange thresholds that trigger update statistics, which ensures that critical
resources are used only when the query processor generates more efficient
plans.

Becauseit isaresource-intensivetask, base the decision to run update statistics
onaspecific set of criteria. Key parametersthat can help you determine agood
time to run update statistics include:

* How much the data characteristics changed since you last ran update
statistics. Thisis known as the datachange parameter.

Query Processing and Abstract Plans 213

Automatically updating statistics

* Whether there are sufficient resources available to run update statistics.
These include resources such as the number of idle CPU cycles and
making sure that critical online activity does not occur during update
statistics.

Data change is akey metric that hel ps you measure the amount of altered data
since you last ran update statistics, and is tracked by the datachange function.
Using thismetric and the criteriafor resource avail ability, you can automate the
process of running update statistics. Job Scheduler includes a mechanism to
automatically run update statistics. Job Scheduler also includes a set of
customizable templates that determine when to run update statistics. These
inputsinclude all parametersto update statistics, the datachange threshold
values, and thetimeto run update statistics. Job Scheduler runsupdate statistics
at alow priority so it does not affect critical jobs that are running concurrently.

What is the datachange function?

214

The datachange function measures the amount of change in the data
distribution since update statistics last ran. Specifically, it measuresthe number
of inserts, updates, and deletes that have occurred on the given object, partition,
or column, and helps you determine if running update statistics would benefit
the query plan.

The syntax for datachange is:
select datachange(object_name, partition_name, colname)
Where:

e object_name—isthe object name. This object is assumed to bein the
current database. Thisis arequired parameter. It cannot be null.

e partition_name — is the data partition name. This can be anull value.

e colname—isthe column namefor which the datachange isrequested. This
can beanull value.

The datachange function requires all three parameters.

datachange isexpressed as a percentage of thetotal number of rowsin thetable
or partition (if the partition is specified). The percentage value can be greater
than 100 percent because the number of changes to an object can be much
greater than the number of rows in the table, particularly when the number of
deletes and updates to atable is very high.

Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

Passing a valid object,
partition, and column
name

datachange =

Using null partition
names

datachange =

Using null column
names

datachange =

Null partition and
column names

datachange =

100

100

100

100

The following set of examplesillustrate the various uses for the datachange
function. The examples use the following:

e Object nameis“0O.”
¢ Partition nameis“P”
¢ Columnnameis“C.”

The value reported when you include the object, partition, and column nameis
determined by this equation: the datachange value for the specified columnin
the specified partition divided by the partitions's rowcount. Theresult is
expressed as a percentage:

* (data change value for column C/ rowcount (P))

If you include anull partition name, the datachange valueis determined by this
equation: the sum of the datachange value for the column across all partitions
divided by the rowcount of the table. The result is expressed as a percentage:

* (Sum(data change value for (O, P(1-N) , C))/rowcount (0)
Where P(1-N) indicates that the value is summed over all partitions.

If you include null column names, the value reported by datachange is
determined by this equation: the maximum value of the datachange for all
columnsthat have histogramsfor the specified partition divided by the number
of rows in the partition. The result is expressed as a percentage:

* (Max (data change value for (O, P, Ci))/rowcount (P)

Wherethevalue of i variesthrough the columnswith histograms (for example,
formatid 102 in sysstatistics).

If you include null partition and column names, the value of datachange is
determined by this equation: the maximum value of the datachange for all

columns that have histograms summed across all partitions divided by the
number of rowsin the table. The result is expressed as a percentage:

* (Max(data change value for (O, NULL, Ci))/rowcount (O)

Wherei is 1 through the total number of columns with histograms (for
example, formatid 102 in sysstatistics).

The following session illustrates datachange gathering statistics:

create table matrix(coll int, col2 int)
go

insert into matrix wvalues (234, 560)

go

update statistics matrix(coll)

Query Processing and Abstract Plans 215

Configuring automatic update statistics

go

insert into matrix values (34,56)

go

select datachange ("matrix", NULL, NULL)
go

50.000000

The number of rowsin matrix istwo. Theamount of datathat has changed since
the last update statistics command is 1, so the datachange percentage is 100 *
1/2 = 50 percent.

datachange counters are all maintained in memory. These counters are
periodically flushed to disk by the housekeeper or when you run sp_flushstats.

Configuring automatic update statistics

There are three methods for automatically updating statistics:

» Defining update statistics jobs with Job Scheduler

» Defining update statistics jobs as part of the self-management installation
» Creating user-defined scripts

Creating user-defined scriptsis not discussed in this document.

Using Job Scheduler to update statistics

216

Job Scheduler includes the update statistics template, which you can use to
create ajob that runs update statistics on atable, index, column, or partition.
The datachange function determines when the amount of change in atable or
partition has reached the predefined threshold. You determinethe valuefor this
threshold when you configure the template.

Templates perform the following operations:

» Runupdate statistics on specific tables, partitions, indexes, or columns.
The templates allow you to define the value for datachange that you want
update statistics to run.

Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

Run update statistics at the server level, which configures Adaptive Server
to sweep through the available tablesin all databases on the server and
update statistics on al the tables, based on the threshold you determined
when creating your job.

Use the following steps to configure Job Scheduler to automate the process of
running update statistics (the chapters listed are from the Job Scheduler User’s

Guide:

1 Install and set up Job Scheduler (described in Chapter 2, “ Configuring and
Running Job Scheduler”).

2 Install the stored procedures required for the templates (described in
Chapter 4, “Using Templates to Schedule Jobs’).

3 Instal thetemplates. Job Scheduler providesthe templates specifically for
automating update statistics (described in Chapter 4, “Using Templatesto
Schedule Jobs”).

4 Configure the templates. The templates for automating update statistics
are in the Statistics Management folder.

5 Schedulethejob. After you have defined which index, column, or partition
you want tracked, you can also create a schedul e that determines when
Adaptive Server runsthejob, making sure that update statistics isrun only
when it does not impact performance.

6 ldentify successor failure. The Job Scheduler infrastructure allows you to

identify success or failure for the automated update statistic.

Thetemplate allows you to supply values for the various options of the update
statistics command such as sampling percent, number of consumers, steps, and
so on. Optionally, you can also provide threshold values for the datachange
function, page count, and row count. If you include these optional values, they
are used to determine when and if Adaptive Server should run update statistics.
If the current values for any of the tables, columns, indexes, or partitions
exceed the threshold values, Adaptive Server issues update statistics. Adaptive
Server detects that update statistics has been run on acolumn. Any query
referencing that table in the procedure cache is recompiled before the next

execution.
When does Adaptive There are many forms of the update statistics command (update statistics,
gtg?igircrsu’p update update index statistics, and so on), and you can form the command in many
' ways depending on your needs.

Query Processing and Abstract Plans 217

Configuring automatic update statistics

You must specify three thresholds: rowcount, pagecount, and datachange. All
the thresholds must be satisfied for update statistics to run. Although values of

NULL or 0 are ignored, these values do not prevent the command from

running.

Table 6-1 describes the circumstances under which Adaptive Server
automatically runs update statistics, based on the parameter valuesyou provide.

Table 6-1: When does Adaptive Server automatically run update

statistics?
If the user

Action taken by Job Scheduler

Specifies a datachange threshold of zero or NULL

Runs update statistics at the scheduled time.

Specifies a datachange threshold greater than zero
for atable only, and does not request the update
index statistics form

Getsall theindexesfor the table and getsthe leading column
for each index. If the datachange value for any leading
column is greater than or equa to the threshold, run update
statistics.

Specifies threshold values for the table and index
but does not request the update index statistics form

Gets the datachange value for the leading column of the
index. If the datachange valueis greater than or equal to the
threshold, runs update statistics.

Specifies athreshold value for atable only, and
requests the update index statistics form

Getsall theindexesfor the table and getstheleading column
for each index. If the datachange value for any leading
column exceeds the threshold, runs update statistics.

Specifies threshold values for table and index and
reguests the update index statistics form

Gets the datachange value for the leading column of the
index. If the datachange valueis greater than or equal to the
threshold, runs update statistics.

Specifies threshold values for atable and one or
more columns (ignores any indexes or requests for
the update index statistics form)

Gets the datachange value for each column. If the
datachange value for any column is greater than or equal to
the threshold, runs update statistics.

The datachange function compiles the number of changesin atable and
displays this as a percentage of the total number of rowsin the table. You can
use this compiled information to create rules that determine when Adaptive
Server runs update statistics. The best time for this to happen can be based on
any number of objectives:

e The percentage of changein atable

* Number of CPU cyclesavailable

e During a maintenance window

218

After update statistics runs, the datachange counter isreset to zero. The count
for datachange istracked at the partition level (not the object level) for inserts
and deletes and at the column level for updates.

Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

Examples of updating statistics with datachange

You can write scriptsthat check for the specified amount of changed data at the
column, table, or partition level. The time at which you decide to run update
statistics can be based on a number of variables collected by the datachange
function; CPU usage, percent change in atable, percent change in a partition,
and so on.

In this example, the authors table is partitioned, and the user wants to run
update statistics when the data changes to the city column in the author_ptn2
partition are greater than or equal to 50%:

select @datachange = datachange ("authors", "author ptn2", "city")
if @datachange >= 50
begin

update statistics authors partition author ptn2(city)
end
go

The user can also specify that the script is executed when the system isidle or
any other parameters they seefit.

In thisexample, the user triggers update statistics when the data changes to the
city column of the authors table are greater than or equal to 100% (the tablein
this example is not partitioned):

select @datachange = datachange ("authors",NULL, "city")
if @datachange > 100
begin
update statistics authors (city)
end

go

Column statistics and statistics maintenance

Histograms are kept on a per-column basis, rather than on a per-index basis.
This has certain implications for managing statistics:

e If acolumn appearsin more than one index, update statistics, update index
statistics, or create index updates the histogram for the column and the
density statisticsfor all prefix subsets.

update all statistics updates histograms for all columnsin atable.

Query Processing and Abstract Plans 219

Column statistics and statistics maintenance

220

Dropping an index does not drop the statistics for the index, since the
optimizer can use column-level statistics to estimate costs, even when no
index exists.

To removethe statistics after dropping anindex, you must explicitly delete
them using delete statistics.

If the statistics are useful to the query processor and to keep the statistics
without having an index, use update statistics, specifying the column
name, for indexes where the distribution of key values changes over time.

Truncating a table does not del ete the column-level statisticsin
sysstatistics. In many cases, tables are truncated and the same datais
reloaded.

Since truncate table does not delete the column-level statistics, you need
not run update statistics after the table is reloaded, if the datais the same.

If you reload the table with data that has a different distribution of key
values, run update statistics.

You can drop and re-create indexes without affecting the index statistics,
by specifying “0” for the number of stepsin the with statistics clause to
create index. This create index command does not affect the statisticsin
sysstatistics:

create index title id ix on titles(title_id)
with statistics using 0 values

This allows you to re-create an index without overwriting statistics that
have been edited with optdiag.

If two users attempt to create an index on the same table, with the same
columns, at the sametime, one of the commandsmay fail dueto an attempt
to enter a duplicate key value in sysstatistics.

update statistics on a column in a partition of a multi-partition table will
update the statistics for that partition, but also has the side effect of
updating the global histogram for that column. Thisisdone by merging the
histograms for that column from each partition in a row-weighted fashion
to arrive at aglobal histogram for the column.

Updating statistics on a multi-partitioned table for a column, without
specifying a partition, updates the statistics for each partition of the table
for that column, and, as alast step, mergesthe partition histogramsfor the
column to create aglobal histogram for the column.

Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

e Theoptimizer only usesthe global histogramsfor amulti-partitioned table
during compilation, and does not read the partition histograms. This
approach avoids the overhead of merging partition histograms at
compilation time, and instead performs any merging work at DDL time.

Creating and updating column statistics

Creating statistics on unindexed columns can improve the performance of
many queries. The optimizer can use statistics on any column in awhere or
having clause to help estimate the number of rows from a table that match the
complete set of query clauses on that table.

Adding statisticsfor the minor columns of indexes and for unindexed columns
that are frequently used in search arguments can greatly improve the
optimizer’s estimates.

Maintaining a large number of indexes during data modification can be
expensive. Every index for atable must be updated for eachinsert and delete to
the table, and updates can affect one or more indexes.

Generating statisticsfor acolumn without creating anindex givesthe optimizer
more information to use for estimating the number of pagesto beread by a
query, without the processing expense of index updates during data
modification.

The optimizer can apply statistics for any columns used in a search argument
of awhere or having clause and for any column named in ajoin clause.

Use these commands to create and maintain statistics:

e update statistics, when used with the name of acolumn, generates statistics
for that column without creating an index on it.

The optimizer can use these column statistics to more precisely estimate
the cost of queriesthat reference the column.

e update index statistics, when used with an index name, creates or updates
statistics for al columnsin an index.

If used with atable name, it updates statistics for al indexed columns.
e update all statistics creates or updates statistics for all columnsin atable.
Good candidates for column statistics are:

e Columnsfrequently used as search argumentsin where and having clauses

Query Processing and Abstract Plans 221

Creating and updating column statistics

e Columnsincluded in acomposite index, and which are not the leading
columnsin theindex, but which can help estimate the number of datarows
that need to be returned by a query

When additional statistics may be useful

Example 1

Example 2

222

To determine when additional statistics are useful, run queries using set option
commands and set statistics io. If there are significant discrepancies between
the“rowsto bereturned” and I/O estimates displayed by set commands and the
actual 1/0 displayed by statistics io, examine these queries for places where
additional statistics can improve the estimates. Look especially for the use of
default density values for search arguments and join columns.

The set option show_missing_stats command prints the names of columns that
could have used histograms, and groups of columnsthat could have used multi-
attribute densities. Thisis particularly useful in pointing out where additional

statistics can be useful.

1> set option show_missing_stats long

2>go

1> dbcc traceon(3604)

2>go

DBCC execution completed. If DBCC printed error messages, contact a
user with System Administrator (SA) role.

1> select * from part, partsupp

2> where p_partkey = ps_partkey and p_itemtype = ps_itemtype
3>go

NO STATS on column part.p_partkey

NO STATS on column part.p_itemtype

NO STATS on column partsupp.pa_itemtype

NO STATS on density set for E={p_partkey, p_itemtype}
NO STATS on density set for F={ps_partkey, ps_itemtype}

(200 rows affected)

You can get the same information using the show_final_plan_xml option. Note
that the set plan uses the client option and traceflag 3604 to get the output on
the client side. Thisdiffersfrom the way the message option of set planisused.

1> dbcc traceon(3604)
2>go

DBCC execution completed. If DBCC printed error messages, contact a
user with System Administrator (SA) role.

1> set plan for show_final_plan_xml to client on
2>go

Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

1> select * from part, partsupp
2> where p_partkey = ps_partkey and p_itemtype = ps_itemtype
3>go
<?xml version="1.0" encoding="UTF-8"?>
<query>
<planVersion> 1.0 </planVersion>

<optimizerStatisticss>
<statInfo>
<objName>part</objName>
<missingHistograms>
<columns>p partkey</columns
<column>p itemtype</column>
</missingHistogram>
<missingDensity>
<column>p partkey</columns>
<column>p itemtype</column>
</missingDensity>
</statInfo>
<statInfo>
<objName>partsupp</objName>
<missingHistograms>
<column>ps partkey</column>
<columns>ps_itemtype</column>
</missingHistogram>
<missingDensitys>
<column>ps partkey</column>
<column>ps_itemtype</column>
</missingDensity>
</statInfo>
</optimizerStatistics>

Use update statistics on part and partsupp to create statistics on p_partkey and
p_itemtype, thus creating a histogram on the leading column (p_partkey) and
the density (p_partkey, p_itemtype). Create a histogram on p_itemtype as well.
Use these commands:

1> update statistics part(p_partkey, p_itemtype)

2>go

1> update statistics part(p_itemtype)

2>go
Since partsupp has a histogram on ps_partkey, you can create a histogram on
ps_itemtype and a density on (ps_itemtype, ps_partkey). The columns used for
density may be unordered.

Query Processing and Abstract Plans 223

Creating and updating column statistics

1> update statistics partsupp(ps_itemtype, ps_partkey)
2>go

If this procedure is successful, you will not see the “NO STATS’ messages
shown in Example 1 when you run the query again.

Adding statistics for a column with update statistics
This command adds statistics for the price column in thetitles table:
update statistics titles (price)
This command specifies the number of histogram steps for a column:

update statistics titles (price)
using 50 values

This command adds a histogram for the titles.pub_id column and generates
density values for the prefix subsets pub_id; pub_id, pubdate; and pub_id,
pubdate, title_id:

update statistics titles(pub id, pubdate, title id)

However, this command does not create a histogram on pubdate and
title_ id, Since aseparate update statistics command is needed for every
column for which a histogram is desired.

Note Running update statistics with a table name updates histograms and
densities for leading columns for indexes only; it does not update the statistics
for unindexed columns. To maintain these statistics, run update statistics and
specify the column name, or run update all statistics.

Adding statistics for minor columns with update index statistics

To create or update statistics on all columnsin an index, use update index
statistics. The syntax is:

update index statistics

table_name [[partition data_partition_name] |

[index_name [partition index_partition_name]]]

[using step values |

[with consumers = consumers] [, sampling = percent]

224 Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

Adding statistics for all columns with update all statistics
To create or update statistics on al columnsin atable, use update all statistics.
The syntax is:

update all statistics table_name
[partition data_partition_name]

Choosing step numbers for histograms

By default, each histogram has 20 steps, which provides good performance and
modeling for columns that have an even distribution of values. A higher
number of steps can increase the accuracy of 1/0 estimates for:

e Columnswith alarge number of highly duplicated values
e Columnswith unequal or skewed distribution of values
e Columnsthat are queried using leading wildcards in like queries

The histogram tuning factor default of 20 automatically chooses a step value
between the current requested step value (default 20) and the increased steps
due to the factor (20 * 20 = 400) so that Adaptive Server will automatically
choose the optimal steps value to compensate for the above cases. Overriding
the step values should take into account the larger number of steps already
introduced by the histogram tuning factor.

Note If your database was updated from a pre-11.9 version of the server, the
number of steps defaults to the number of steps that were used on the
distribution page.

Disadvantages of too many steps

Increasing the number of steps beyond what is needed for good query
optimization can degrade Adaptive Server performance, largely dueto the
amount of space that is required to store and use the statistics. Increasing the
number of steps:

* Increasesthe disk storage space required for sysstatistics

Query Processing and Abstract Plans 225

Scan types, sort requirements, and locking

» Increases the cache space needed to read statistics during query
optimization

* Requires more I/0O, if the number of stepsisvery large

During query optimization, histograms use space borrowed from the procedure
cache. This spaceis released as soon as the query is optimized.

Choosing a step number

If your table has 5000 rows, and one value in the column that has only one
matching row, you may need to request 5000 steps to get a histogram that
includes a frequency cell for every distinct value. The actual number of steps
isnot 5000; it is either the number of distinct values plus one (for dense
frequency cells) or twice the number of values plus one (for sparse frequency
cells).

The sp_configure option histogram tuning factor automatically chooses a larger
number of steps, within parameters, when there are alarge number of highly
duplicated values.

The default value of the histogram tuning factor has been changed, in 15.0, to
20. If the requested step count is 50, then update statistics can create up to

20 * 50 = 1000 steps. This larger number of stepsisused only if histogram
distribution is skewed with a number of domain values that are highly
duplicated. However, for a unique column, update statistics still uses only 50
steps to represent the histogram. To most efficiently use histograms, specify a
relatively low number of steps and allow the histogram tuning factor to
determine whether more steps would be useful for optimization. For example,
instead of specifying 1000 stepswith adefault step count of 1000 to be used by
all histograms, it is better to specify 50 default steps and a histogram tuning
factor of 20. This allows Adaptive Server to determine the best step count,
within the range of 50 to 1000 steps, with which to represent the distribution.

Scan types, sort requirements, and locking

Table 6-2 showsthetypes of scans performed during update statistics, thetypes
of locks acquired, and when sorts are needed.

226 Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

Table 6-2: Scans, sorts, and locking during update statistics

update statistics
specifying Scans and sorts performed

Locking

Table name

Allpages-locked table Table scan, plus aleaf-level scan of each
nonclustered index

Level 1; shared intent tablelock,
shared lock on current page

Data-only-locked table Table scan, plus aleaf-level scan of each
nonclustered index and the clustered index, if one
exists

Level O; dirty reads

Table name and clustered index name

Allpages-locked table Table scan

Level 1; shared intent tablelock,
shared lock on current page

Data-only-locked table Leaf level index scan

Leve O; dirty reads

Table name and nonclustered index name

Allpages-locked table Leaf level index scan

Level 1; shared intent tablelock,
shared lock on current page

Data-only-locked table Leaf level index scan

Level O; dirty reads

Table name and column name

Allpages-locked table Table scan; creates a worktable and sorts the

Level 1; shared intent tablelock,

worktable shared lock on current page
Data-only-locked table Table scan; creates a worktable and sorts the Level O; dirty reads
worktable

Sorts for unindexed or non-leading columns

For unindexed columns and columns that are not the leading columnsin
indexes, Adaptive Server performs a serial table scan, copying the column
valuesinto aworktable. It then sorts the worktable to build the histogram. The
sort is performed in serial, unless the with consumers clause is specified.

See Chapter 9, “Parallel Sorting” in Performance and Tuning: Optimizer and
Abstract Plans for information on parallel sort configuration requirements.

Query Processing and Abstract Plans

227

Scan types, sort requirements, and locking

Locking, scans, and sorts during update index statistics

The update index statistics command generates a series of update statistics
operations that use the same locking, scanning, and sorting as the equivalent
index-level and column-level command. For example, if the salesdetail table
has a nonclustered index named sales_det_ix on salesdetail(stor_id, ord_num,
title_id), this command:

update index statistics salesdetail
performs these update statistics operations:

update statistics salesdetail sales det ix
update statistics salesdetail (ord num)
update statistics salesdetail (title id)

Locking, scans and sorts during update all statistics

The update all statistics commands generate a series of update statistics
operations for each index on the table, followed by a series of update statistics
operations for all unindexed columns.

Using the with consumers clause

The with consumers clause for update statistics is designed for use on
partitioned tables on Redundant Array of Independent Disks (RAID) devices,
which appear to Adaptive Server asasingle 1/O device, but can produce the
high throughput required for parallel sorting. See Chapter 9, “ Parallel Sorting”
in Performance and Tuning: Optimizer and Abstract Plans for more
information.

Reducing update statistics impact on concurrent processes

228

Since update statistics uses dirty reads (transaction isolation level 0) for
data-only-locked tables, you can execute it while other tasks are active on the
server; it does not block access to tables and indexes. Updating statistics for
leading columnsin indexes requires only aleaf-level scan of the index, and
does not require a sort, so updating statistics for these columns does not affect
concurrent performance very much.

Adaptive Server Enterprise

CHAPTER 6 Using Statistics to Improve Performance

However, updating statistics for unindexed and non-leading columns, which
reguire a table scan, worktable, and sort can affect concurrent processing.

* Sortsare CPU-intensive. Use a seria sort, or asmall number of worker
processes to minimize CPU utilization. Alternatively, you can use
execution classes to set the priority for update statistics.

See “Using Engines and CPUS’ in Performance and Tuning: Basics.

e The cache space required for merging sort runs is taken from the data
cache, and some procedure cache space is also required. Setting the
number of sort buffers to alow value reduces the space used in the buffer
cache.

If number of sort buffers isset to alarge value, it takes more space from the
data cache, and may also cause stored procedures to be flushed from the
procedure cache, since procedure cache space is used while merging
sorted values. There are approximately 100 bytes of procedure cache
needed for every row that can fit into the sort buffers specified. For
example, if 500 2K sort buffers are specified, and about 200 rows fit into
each 2K buffer, then 200 * 100 * 500 bytes of procedure cache are needed
to support the sort. This example requires about 5000 2K procedure cache
buffers, if the entire 500 data cache buffers are filled by a sort run.

Creating the worktables for sorts also uses space in tempdb.

Using the delete statistics command

In versions of Adaptive Server earlier than 11.9, dropping an index removed
the distribution page for the index. As of version 11.9.2, maintaining
column-level statisticsisunder explicit user control, and the optimizer can use
column-level statistics even when an index does not exist. The delete statistics
command allows you to drop statistics for specific columns.

If you create anindex and then decide to drop it becauseit is not useful for data
access, or because of the cost of index maintenance during data modifications,
you must determine:

* Whether the statistics on the index are useful to the optimizer.

e Whether the distribution of key valuesin the columns for thisindex are
subject to change over time as rows are inserted and deleted.

Query Processing and Abstract Plans 229

When row counts may be inaccurate

If the distribution of key values changes, run update statistics periodically
to maintain useful statistics.

This example deletes the statistics for the price column in the titles table:

delete statistics titles (price)

Note delete statistics only removes rows from sysstatistics; it does not remove
rows from systabstats. The rows in systabstats that described partition row
counts, cluster ratios, page counts, etc. cannot be deleted. However, if optdiag
simulate statistics is used add any simulated systabstats rows to sysstatistics,
then those rows are del eted.

When row counts may be inaccurate

Row count values for the number of rows, number of forwarded rows, and
number of deleted rows may be inaccurate, especially if query processing
includes many rollback commands. If workloads are extremely heavy, and the
housekeeper wash task does not run often, these statistics are more likely to be
inaccurate.

Running update statistics corrects counts in systabstats.
Running dbcc checktable or dbcc checkdb updates these valuesin memory.

When the housekeeper wash task runs, or when you execute sp_flushstats,
these values are saved in systabstats.

Note You must set the configuration parameter housekeeper free write percent
to 1 or greater to enable housekeeper statistics flushing.

230 Adaptive Server Enterprise

CHAPTER 7 Introduction to Abstract Plans

This chapter provides an overview of abstract plans.

Topic Page
Overview 231
Managing abstract plans 232
Rel ationship between query text and query plans 233
Full versus partia plans 234
Abstract plan groups 236
How abstract plans are associated with queries 236

Overview

Adaptive Server can generate an abstract plan for a query, and save the
text and its associated abstract plan in the sysqueryplans system table.
Using arapid hashing method, incoming SQL queries can be compared to
saved query text, and if amatchisfound, the corresponding saved abstract
plan is used to execute the query.

An abstract plan describesthe execution plan for aquery using alanguage
created for that purpose. This language contains operators to specify the

choices and actions that can be generated by the optimizer. For example,
to specify an index scan on the titles table, using the index title_id_ix, the

abstract plan says:

(i_scan title id ix titles)

To use this abstract plan with a query, you can modify the query text and
add aPLAN clause;

select * from titles where title_id = “On Liberty”
plan
“(i_scan title_id_ix titles)”

Query Processing and Abstract Plans 231

Managing abstract plans

Thisalternative hasthe shortcoming of requiring achangeto the SQL text;
however, the method described in the first paragraph, that is, the
sysqueryplans-based way to give the abstract plan of a query, does not
involve changing the query text.

Abstract plans provide ameans for System Administrators and
performance tuners to protect the overall performance of a server from
changes to query plans. Changesin query plans can arise due to:

e Adaptive Server software upgrades that affect optimizer choices and
query plans

* New Adaptive Server features that change query plans

e Changing tuning options such as the parallel degree, table
partitioning, or indexing

The main purpose of abstract plansisto provide ameansto capture query
plans before and after major system changes. The sets of before-and-after
query plans can be compared to determine the effects of changes on your
queries. Other uses include:

e Searching for specific types of plans, such as table scans or
reformatting

e Searching for plansthat use particular indexes

e Specifying full or partial plans for poorly-performing queries

e Saving plansfor queries with long optimization times

Abstract plans provide an alternative to options that must be specified in
the batch or query in order to influence optimizer decisions. Using abstract
plans, you can influence the optimization of a SQL statement without
having to modify the statement syntax. While matching query text to

stored text requires some processing overhead, using asaved plan reduces
query optimization overhead.

Managing abstract plans

232

A full set of system procedures alows System Administrators and
Database Owners to administer plans and plan groups. Individual users
can view, drop, and copy the plans for the queries that they have run.

See Chapter 10, “Managing Abstract Plans with System Procedures,”

Adaptive Server Enterprise

CHAPTER 7 Introduction to Abstract Plans

Relationship between query text and query plans

For most SQL queries, there are many possible query execution plans.
SQL describes the desired result set, but does not describe how that result
set should be obtained from the database. Consider aquery that joinsthree
tables, such asthis:

select tl.cll, t2.c21
from tl, t2, t3
where tl.cll = t2.c21
and tl.cll = t3.c31

There are many different possible join orders, and depending on the
indexes that exist on the tables, many possible access methods, including
table scans, index scans, and the reformatting strategy. Each join may use
either anested-loop join or amerge join. These choices are determined by
the optimizer’s query costing al gorithms, and are not included in or
specified in the query itself.

When you capture the abstract plan, the query is optimized in the usual
way, except that the optimizer also generates an abstract plan, and saves
the query text and abstract plan in sysqueryplans.

Limits of options for influencing query plans
Adaptive Server provides other options for influencing optimizer choices:

* Session-level options such as set forceplan to force join order or set
parallel_degree to specify the maximum number of worker processes
to use for the query

« Optionsthat can beincluded in the query text to influence the index
choice, cache strategy, and parallel degree

There are some limitations to using set commands or adding hints to the
query text:

* Not all query plan steps can be influenced, for example, subquery
attachment

* Some query-generating tools do not support the in-query options or
require all queries to be vendor-independent

Query Processing and Abstract Plans 233

Full versus partial plans

Full versus partial plans

Abstract plans can be full plans, describing all query processing steps and
options, or they can be partial plans. A partial plan might specify that an
index isto be used for the scan of a particular table, without specifying
other access methods. For example:

234

select tl.cll, t2.c21
from tl, t2, t3

where tl.cll = t2.c21
and tl.cll = t3.c31
plan

“(i _scan t3_ c31 ix t3)”

The full abstract plan includes:

Thejointype, nl_join for nested-loop joins, m_g_join for mergejoins,
or h_join for hash joins.

Thejoin order.
The type of scan, t_scan for table scan or i_scan for index scan.

The name of the index chosen for the tables that are accessed via an
index scan.

The scan properties: the parallel degree, 1/0 size, and cache strategy
for each table in the query.

The abstract plan for the query above specifies the join order, the access
method for each table in the query, and the scan properties for each table:

select tl.cll, t2.c21
from tl, t2, t3

where tl.cll = t2.c21
and tl.cll = t3.c31
plan

“(i _scan t3_ c31 ix t3)”

(nl_join (nl join
(t _scan t2)
(i_scan tl _cll ix t1)
)

(i scan t3_c¢31 ix t3)

)

(prop t3
(parallel 1)

(prefetch 16)
(lru)

Adaptive Server Enterprise

CHAPTER 7 Introduction to Abstract Plans

)

(prop tl
(parallel 1)
(prefetch 16)
(lru)

)

(prop t2
(parallel 1)
(prefetch 16)
(lru)

)

If the abstract plan dump mode is on, the query text and the abstract plan
pair are saved in sysqueryplans:

select tl.cll, t2.c21
from tl, t2, t3

where tl.cll = t2.c21
and tl.cll = t3.c31
plan

“(i_scan t3_c31 ix t3)”

Creating a partial plan

When abstract plans are captured, full abstract plans are generated and
stored. You can write partial plansto affect only a subset of the optimizer
choices. If the query above had not used the index on t3, but all other parts
of the query plan were optimal, you could create a partial plan for the
guery using the create plan command. This partia plan specifies only the
index choicefor t3:

create plan

"select tl.cll, t2.c21
from tl, t2, t3

where tl.cll = t2.c21
and tl.cll = t3.c31"

"(i scan t3 31 ix t3)"

You can also create abstract plans with the plan clause for select, delete,
update, and other commands that can be optimized. If the AP dump mode
ison, the query text and AP pair are saved in sysqueryplans:

See “Creating plans using SQL” on page 247.

Query Processing and Abstract Plans 235

Abstract plan groups

Abstract plan groups

Whenyoufirst install Adaptive Server, there are two abstract plan groups:
* ap_stdout, used by default for capturing plans
* ap_stdin, used by default for plan association

A System Administrator can enable server-wide plan captureto ap_stdout,
so that all query plansfor al queries are captured. Server-wide plan
association uses queries and plans from ap_stdin. If some queries require
specially-tuned plans, they can be made available server-wide.

A System Administrator or Database Owner can create additional plan
groups, copy plans from one group to another, and compare plansin two
different groups.

The capture of abstract plans and the association of abstract plans with
queries always happens within the context of the currently-active plan
group. Users can use session-level set commands to enable plan capture
and association.

Some of the ways abstract plan groups can be used are:

» A query tuner can create abstract plans in a group created for testing
purposes without affecting plans for other users on the system

» Using plan groups, “before” and “after” sets of plans can be used to
determine the effects of system or upgrade changes on query
optimization.

See Chapter 8, “ Creating and Using Abstract Plans,” for information on
enabling the capture and association of plans.

How abstract plans are associated with queries

236

When an abstract plan is saved, al white space (tabs, multiple spaces, and
returns, except for returns that terminate a --style comment) in the query
istrimmed to a single space, and a hash-key value is computed for the
white-space trimmed SQL statement. The trimmed SQL statement and the
hash key are stored in sysqueryplans along with the abstract plan, aunique
plan ID, the user's ID, and the ID of the current abstract plan group.

Adaptive Server Enterprise

CHAPTER 7 Introduction to Abstract Plans

When abstract plan association is enabled, the hash key for incoming SQL
statements is computed, and this value is used to search for the matching
query and abstract plan in the current association group, with the
corresponding user ID. The full association key of an abstract plans
consists of:

e Theuser ID of the current user
e Thegroup ID of the current association group
e Thefull query text

Once amatching hash key is found, the full text of the saved query is
compared to the query to be executed, and used if it matches.

The association key combination of user ID, group ID and query text
means that for a given user, there cannot be two queriesin the same
abstract plan group that have the same query text, but different query
plans.

Query Processing and Abstract Plans 237

How abstract plans are associated with queries

238 Adaptive Server Enterprise

CHAPTER 8

Creating and Using Abstract
Plans

This chapter provides an overview of the commands used to capture
abstract plans and to associate incoming SQL queries with saved plans.
Any user can issue session-level commands to capture and load plans
during a session, and a System Administrator can enable server-wide
abstract plan capture and association. This chapter also describes how to
specify abstract plans using SQL.

Topic Page
Using set commands to capture and associate plans 239
set plan exists check option 244
Using other set options with abstract plans 244
Server-wide abstract plan capture and association modes 246
Creating plans using SQL 247

Using set commands to capture and associate plans

At the session level, any user can enable and disable capture and use of
abstract planswith the set plan dump and set plan load commands. The set
plan replace command determines whether existing plans are overwritten
by changed plans.

Enabling and disabling abstract plan modes takes effect at the end of the
batch in which the command isincluded (similar to showplan). Therefore,
change the mode in a separate batch before you run your queries:

set plan dump on
go

/*queries to run*/
go

Query Processing and Abstract Plans 239

Using set commands to capture and associate plans

Any set plan commands used in a stored procedure do not affect the
procedure (except those statements affected by deferred compilation) in
which they are included, but remain in effect after the procedure

compl etes.

Enabling plan capture mode with set plan dump

240

The set plan dump command activates and deactivates the capture of
abstract plans. You can save the plans to the default group, ap_stdout, by
using set plan dump with no group name:

set plan dump on

To start capturing plansin aspecific abstract plan group, specify the group
name. This example sets the group dev_plans as the capture group:

set plan dump dev_plans on

The group that you specify must exist before you issue the set command.
The system procedure sp_add_qgpgroup creates abstract plan groups; only
the System Administrator or Database Owner can create an abstract plan
group. Once an abstract plan group exists, any user can dump plansto the
group. See “Creating agroup” on page 286 for information on creating a
plan group.

To deactivate the capturing of plans, use:
set plan dump off

You do not need to specify a group name to end capture mode. Only one
abstract plan group can be active for saving or matching abstract plans at
any onetime. If you are currently saving plans to a group, you must turn
off the plan dump mode, and re-enable it for the new group, as shown here;

set plan dump on /*save to the default group*/
go

/*some queries to be captured */

go

set plan dump off

go

set plan dump dev_plans on

go

/*additional queries*/

go

The use of the use database command while set plan dump isin effect
disables plan dump mode.

Adaptive Server Enterprise

CHAPTER 8 Creating and Using Abstract Plans

Associating queries with stored plans

The set plan load command activates and deactivates the association of
queries with stored abstract plans.

To start the association mode using the default group, ap_stdin, use the
command:

set plan load on

To enable association mode using another abstract plan group, specify the
group name:

set plan load test plans on

Only one abstract plan group can be active for plan association at onetime.
If plan association is active for a group, you must deactivate the current
group and start association for the new group, as shown here:

set plan load test plans on

go
/*some queries*/

go

set plan load off

go

set plan load dev_plans on
go

The use of the use database command while set plan load isin effect
disables plan load mode.

Using replace mode during plan capture

While plan capture mode is active, you can choose whether to have plans
for the same query replace existing plans by enabling or disabling set plan
replace. This command activates plan replacement mode:

set plan replace on

You do not specify agroup namewith set plan replace; it affectsthe current
active capture group.

To disable plan replacement:
set plan replace off

The use of the use database command while set plan replace isin effect
disables plan replace mode.

Query Processing and Abstract Plans 241

Using set commands to capture and associate plans

When to use replace mode

When you are capturing plans, and a query has the same query text as an
already-saved plan, the existing plan is not replaced unless replace mode
isenabled. If you have captured abstract plansfor specific queries, and you
are making physical changesto the database that affect optimizer choices,
you need to replace existing plans for these changes to be saved.

Some actions that might require plan replacement are:

» Adding or dropping indexes, or changing the keys or key ordering in
indexes

e Changing the partitioning on atable
* Adding or removing buffer pools
» Changing configuration parameters that affect query plans

For plans to be replaced, plan load mode should not be enabled in most
cases. When plan association is active, any plan specifications are used as
inputs to the optimizer. For example, if afull query plan includes the
prefetch property and an 1/O size of 2K, and you have created a 16K pool
and want to replace the prefetch specification in the plan, do not enable
plan load mode.

You may want to check query plans and replace some abstract plans as
data distribution changes in tables, or after rebuilds on indexes, updating
statistics, or changing the locking scheme.

Using dump, load, and replace modes simultaneously

You can have both plan dump and plan load mode active simultaneously,
with or without replace mode active.

Using dump and load to the same group

242

If you have enabled dump and load to the same group, without replace
mode enabled:

e If avalid plan exists for the query, it isloaded and used to optimize
the query.

» |If aplan existsthat is not valid (for example, because an index has
been dropped), a new plan is generated and used to optimize the
query, but is not saved.

Adaptive Server Enterprise

CHAPTER 8 Creating and Using Abstract Plans

e Iftheplanisapartia plan, afull plan is generated, but the existing
partial plan is not replaced

e If aplan doesnot exist for the query, aplan is generated and saved.
With replace mode also enabled:

e If avalid plan exists for the query, it is loaded and used to optimize
the query.

e Iftheplanisnot valid, anew plan is generated and used to optimize
the query, and the old plan is replaced.

e Iftheplanisapartia plan, acomplete plan isgenerated and used, and
the existing partial plan is replaced. The specificationsin the partia
plan are used as input to the optimizer.

e |f aplan doesnot exist for the query, aplan is generated and saved.

Using dump and load to different groups

If you have dump enabled to one group, and load enabled from another
group, without replace mode enabled:

« If avalid plan exists for the query in the load group, it isloaded and
used. The planis saved in the dump group, unless aplan for the query
already existsin the dump group.

« Iftheplanintheload groupis not valid, anew plan isgenerated. The
new plan is saved in the dump group, unless a plan for the query
already existsin the dump group.

e If theplanintheload group isapartial plan, afull planis generated
and saved in the dump group, unless a plan already exists. The
specificationsin the partial plan are used as input to the optimizer.

« Ifthereisno planfor the query intheload group, the plan isgenerated
and saved in the dump group, unless a plan for the query existsin the
dump group.

With replace mode active:

« If avalid plan exists for the query in the load group, it isloaded and
used.

« If theplanintheload group isnot valid, a new plan is generated and
used to optimize the query. The new plan is saved in the dump group.

Query Processing and Abstract Plans 243

set plan exists check option

e If theplanintheload group isapartia plan, afull plan is generated
and saved in the dump group. The specificationsinthe partial plan are
used as input to the optimizer.

e If aplan doesnot exist for the query in the load group, anew planis
generated. The new plan is saved in the dump group.

set plan exists check option

The exists check mode can be used during query plan association to speed
performance when users require abstract plans for fewer than 20 queries
from an abstract plan group. If asmall number of queries require plansto
improve their optimization, enabling exists check mode speeds execution
of all queriesthat do not have abstract plans, because they do not check for
plansin sysqueryplans.

When set plan load and set exists check are both enabled, the hash keysfor
up to 20 queriesin theload group are cached for the user. If the load group
contains more than 20 queries, exists check mode is disabled. Each
incoming query is hashed; if its hash key is not stored in the abstract plan
cache, then thereis no plan for the query and no search ismade. This
speeds the compilation of all queries that do not have saved plans.

The syntax is:
set plan exists check {on | off}
You must enable load mode before you enable plan hash-key caching.

A System Administrator can configure server-wide plan hash-key caching
with the configuration parameter abstract plan cache. To enable server-
wide plan caching, use:

sp_configure "abstract plan cache", 1

Using other set options with abstract plans

244

You can combine other set tuning options with set plan dump and set plan
load.

Adaptive Server Enterprise

CHAPTER 8 Creating and Using Abstract Plans

Using showplan

When showplan isturned on, and abstract plan association mode has been
enabled with set plan load, showplan prints the plan ID of the matching
abstract plan at the beginning of the showplan output for the statement:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using an Abstract Plan (ID : 832005995).

If you run queries using the plan clause added to a SQL statement,
showplan displays:

Optimized using the Abstract Plan in the PLAN clause.

Using noexec

You can use noexec mode to capture abstract plans without actually
executing the queries. If noexec modeisin effect, queries are optimized
and abstract plans are saved, but no query results are returned.

To use noexec mode while capturing abstract plans, execute any needed
procedures (such as sp_add_gpgroup) and other set options (such as set
plan dump) before enabling noexec mode. The following example showsa
typical set of steps:

sp_add_gpgroup pubs_ dev

go

set plan dump pubs_dev on

go

set noexec on

go

select type, sum(price) from titles group by type
go

Using fmtonly

A similar behavior can be obtained for capturing plansin stored
procedureswithout actually executing the stored procedures, using fmtonly
set.

sp_add_gpgroup pubs_dev
go

set plan dump pubs dev on
go

set fmtonly on

Query Processing and Abstract Plans 245

Server-wide abstract plan capture and association modes

Using forceplan

go
exec stored proc(...)

go

If set forceplan on isin effect, and query association is also enabled for the
session, forceplan isignored if afull abstract plan is used to optimize the
query. If apartial plan does not completely specify the join order:

* Fird, thetablesin the abstract plan are ordered, as specified.
e Theremaining tables are ordered as specified in the from clause.

e Thetwo lists of tables are merged.

Server-wide abstract plan capture and association

modes

246

A System Administrator can enabl e server-wide plan capture, association,
and replacement modes with these configuration parameters:

* abstract plan dump — enables dumping to the default abstract plans
capture group, ap_stdout.

* abstract plan load — enables loading from the default abstract plans
loading group, ap_stdin.

* abstract plan replace —when plan dump mode is also enabled, enables
plan replacement.

* abstract plan cache — enables caching of abstract plan hash IDs;
abstract plan load must also be enabled. See “set plan exists check
option” on page 244 for more information.

By default, these configuration parameters are set to 0, which means that
capture and association modes are off. To enable a mode, set the
configuration valueto 1:

sp_configure "abstract plan dump", 1

Enabling any of the server-wide abstract plan modes is dynamic; you do
not have to reboot the server.

Adaptive Server Enterprise

CHAPTER 8 Creating and Using Abstract Plans

Server-wide capture and association allows the System Administrator to
capture all plansfor al users on aserver. You cannot override he server-
wide modes at the session level.

Creating plans using SQL

Using create plan

You can directly specify the abstract plan for a query by:
e Using the create plan command

e Adding the plan clause to select, insert...select, update, delete and
return commands, and to if and while clauses

For information on writing plans, see Chapter 9, “Abstract Query Plan
Guide.”

The create plan command specifies the text of a query, and the abstract
plan to save for the query.

This example creates an abstract plan:

create plan

“select avg(price) from titles”
“(scalar agg

(i_scan type price ix titles)

)n

Theplanissaved inthe current active plan group. You can a so specify the
group name:

create plan

“select avg(price) from titles”
“(scalar agg

(i_scan type price ix titles)
)n

into dev_plans

If aplan already existsfor the specified query in the current plan group, or
the plan group that you specify, you must first enable replace mode in
order to overwrite the existing plan.

Query Processing and Abstract Plans 247

Creating plans using SQL

If you want to seethe plan ID that isused for aplan you create, create plan
can return the ID as avariable. You must declare the variable first. This
example returnsthe plan ID:

create plan

“select avg(price) from titles”
“(scalar_agg

(1_scan type price ix titles)
)II
into dev_plans
and set @id

select @id

When you use create plan, the query in the plan is not executed. This
means that:

» Thetext of the query isnot parsed, so the query is not checked for
valid SQL syntax.

» Theplansare not checked for valid abstract plan syntax.

» Theplans are not checked to determine whether they are compatible
with the SQL text.

To guard against errors and problems, you should immediately executethe
specified query with showplan enabled.

Using the plan clause

You can use the plan clause with the following SQL statements to specify
the plan to use to execute the query:

* select

* insert...select

* delete
* update
o if

* while

* return

This example specifies the plan to use to execute the query:

248 Adaptive Server Enterprise

CHAPTER 8 Creating and Using Abstract Plans

select avg(price) from titles
plan

“(scalar agg
(i_scan type price ix titles

)II

When you specify an abstract plan for aquery, the query isexecuted using
the specified plan. If you have showplan enabled, this message is printed:

Optimized using the Abstract Plan in the PLAN clause.

When you use the plan clause with aquery, any errorsin the SQL text, the
plan syntax, and any mismatches between the plan and the SQL text are
reported as errors. For example, this plan uses the wrong AP operator for

the query:

/* wrong operator! */
select * from tl1,t2
where cll = c21
plan
“ (union

(t_scan t1)

(t_scan t2)
)ll

It returns the following message:

Abstract Plan (AP) Warning: An error occurred while applying the AP:
(union (t_scan tl) (t_scan2))

to the SQL query:

select * from tl, t2

where cll = c21
Failed to apply the top operator ‘union’ of the following AP fragment:

(union (t_scan tl) (t_scan t2))
The query contains no union that matches the ‘union’ AP operator at this point.

The following template can be used as a basis for a valid AP:
(also_enforce (join (also _enforce (scan tl)) (also_enforce (scan t2)))

)

The optimizer will complete the compilation of this query; the query will be
executed normally.

Plans specified with the plan clause are saved in sysqueryplans only if plan
capture is enabled. If aplan for the query already existsin the current
capture group, you must enable replace mode in order to replace an
existing plan.

Query Processing and Abstract Plans 249

Creating plans using SQL

250 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

This chapter covers some guidelines you can use in writing Abstract

Plans.
Topic Page
Introduction 251
Tips on writing abstract plans 279
Comparing plans before and after 280
Abstract plans for stored procedures 282
Ad hoc queries and abstract plans 284

Introduction

Abstract plans alow you to specify the desired execution plan of aquery.
Abstract plans provide an alternative to the session-level and query level
optionsthat force ajoin order, or specify theindex, |/O size, or other query
execution options. The session-level and query-level options are
described in Chapter 8, “Creating and Using Abstract Plans.”

There are severa optimization decisionsthat cannot be specified with set
commands or clauses included in the query text. Some examples are:

e Algorithmsthat implement a given relational operator; for example,
NLJ versus MJ versus HJ or GroupSorted versus GroupHashing versus
Grouplnserting

e Subquery attachment
e Thejoin order for flattened subqueries
e Reformatting

In many cases, including set commands or changing the query text is not
always possible or desired. Abstract plans provide an alternative, more
complete method of influencing optimizer decisions.

Query Processing and Abstract Plans 251

Introduction

Abstract plans are relational algebra expressions that are not included in
the query text. They are stored in a system catal og and associated to
incoming queries based on the text of these queries.

Abstract plan language
The abstract plan languageisarelational algebrathat usesthese operators:
» distinct —alogical operator describing duplicates elimination.

» distinct_sorted — a physical operator describing available
ordering-based duplicates elimination.

» distinct_sorting — a physical operator describing sorting-based
duplicates elimination.

» distinct_hashing — a physical operator describing hashing-based
duplicates elimination.

» group —alogical operator, describing vector aggregation.

» group_sorted — a physical operator describing the available
ordering-based vector aggregation.

» group_hashing —a physical operator describing hashing-based
vector aggregation.

» group_inserting —a physical operator describing clustered index
insertion-based vector aggregation.

* join —the generic join and a high-level logical join operator that
describes inner, outer and existence joins, using nested-loop joins,
merge joins, or hash joins.

* nl_join — specifying a nested-loop join, including all inner, outer,
and existencejoins.

* m_join —specifying amergejoin, including inner and outer joins.

* h_join — specifying a hash join, including al inner, outer, and
existencejoins.

* union —alogical union operator. It describes both the union and the
union all SQL constructs.

* append_union_all —aphysical operator implementing union all. It
appends the child result sets, one after the other.

252 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

e merge_union_all —aphysical operator implementing union all. It
merges the child result sets on the subset of the projection that is
ordered in each child, and preserves that ordering.

e merge_union_distinct —a physical operator implementing UNION
[DISTINCT]. A merge-based duplicates removal agorithm.

e hash_union_distinct —a physical operator implementing UNION
[DISTINCT]. A merge-based duplicates removal agorithm.

e scalar_agg —alogical operator, describing scalar aggregation.

e scan —alogical operator that transforms a stored table in aflow of
rows, an abstract plan derived table. It allows partial plansthat do not
restrict the access method.

e i_scan —aphysical operator implementing scan. It directsthe
optimizer to use an index scan on the specified table.

e t_scan —aphysical operator implementing scan. It directs the
optimizer to use afull table scan on the specified table.

e m_scan —aphysical operator implementing scan. It directsthe
optimizer to use amulti-index table scan on the specified table,
either index union, index intersection, or both.

e store —aphysical operator describing the materialization of an
abstract plan derived table in a stored worktable.

e store_index —aphysical operator describing the materialization of an
abstract plan derived table in a clustered index stored worktable; the
optimizer chooses the useful key columns.

e sort—aphysical operator describing the sorting of an abstract plan
derived table; the optimizer chooses the useful key columns.

e nested —afilter describing the placement and structure of nested
subqueries.

e xchg —aphysical operator describing the on-the-fly repartitioning of
an abstract plan derived table, the abstract plan gives the target
degree, but the optimizer chooses the useful target partitioning.

Additional abstract plan keywords are used for grouping and

identification:

e sequence — groups the elements when a sequence requires multiple
steps.

e hints — groups a set of hintsfor a partia plan.

Query Processing and Abstract Plans 253

Introduction

prop — introduces a set of scan properties for atable: prefetch, Irujmru
and parallel.

table — identifies a table when correlation names are used, and in
subqueries or views.

work_t — identifies aworktable.

in —used with table to identify tables named in a subquery (subq) or
view (view).

subg — used under the nested operator to indicate the attachment point
for anested subquery, and to introduce the subqueries abstract plan.

All legacy abstract plan operators, such as g_join, are still accepted for
their new counterparts.

Queries, access methods, and abstract plans

254

For any specific table, there can be several access methods for a specific
guery: index scans using different indexes, table scans, the OR strategy,
and reformatting are some examples.

This ssimple query has several choices of access methods:

select * from tl
where cll > 1000 and cl2 < O

The following abstract plans specify three different access methods:

select * from tl

Usetheindexi_ci1:

(1 scan i cl1 t1)
Usetheindexi_c12:

(1 scan i cl2 t1)
Do afull table scan:

(t_scan t1)

Do amulti-scan; that is, the union or intersection of several indices of
the table, according to the complex clause (hence the more complex
query used in this example):

where (cll > 1000 or c¢l2 < 0) and (cl2 > 1000 or cll2 < 0)

plan
“(m_scan tl1)”

Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

Abstract plans can be full plans, specifying all optimizer choicesfor a
query, or can specify asubset of the choices, such astheindex to usefor a
single table in the query, but not the join order for the tables. For example,
using apartial abstract plan, you can specify that the query above should
use someindex and let the optimizer choose betweeni_c11 andi_c12, but
not do afull table scan. The empty parentheses are used in place of the
index name;

(i_scan () t1)

In addition, the query could use either 2K or 16K 1/O, or be performed in
serial or parallel.

Derived tables

A derived table is defined by the evaluation of a query expression and
differsfrom aregular tableinthat it is neither described in system catalogs
nor stored on disk. In Adaptive Server, aderived table may be a SQL
derived table or an abstract plan derived table.

e A SQL derived table — defined by one or more tables through the
evauation of aquery expression. A SQL derived tableisused in the
query expressioninwhichit isdefined and existsonly for theduration
of the query. For more information on SQL derived tables, see the
Transact-SQL User’s Guide.

e An abstract plan derived table — a derived table used in query
processing, the optimization and execution of queries. An abstract
plan derived table differsfrom a SQL derived tableinthat it exists as
part of an abstract plan and isinvisible to the end user.

Identifying tables

Abstract plansneed to nameall of aquery’stablesin anonambiguousway,
such that a table named in the abstract can be linked to its occurrence in
the SQL query. In most cases, the table name is al that is needed. If the
query qualifies the table name with the database and owner name, these
are also needed to fully identify atable in the abstract plan. For example,
this example used the unqualified table name:

select * from tl
The abstract plan also uses the unqualified name:

(t_scan t1)

Query Processing and Abstract Plans 255

Introduction

If a database name and/or owner name are provided in the query:
select * from pubs2.dbo.tl

Then the abstract plan must also use the qualifications:
(t_scan pubs2.dbo.tl)

However, the same table may occur several timesin the same query, asin
this example:

select * from tl a, tl b

Correlation names, a and b in the example above, identify the two tables
in SQL. In an abstract plan, the table operator associates each correlation
name with the occurrence of thetable:
(join
(t_scan (table (a t1)))
(t_scan (table (b tl1)))
)

However, abriefer abstract plan, which usesonly the correlation names, is
also accepted:
(join
(t_scan a)

(t_scan b)

)

Table names can aso be ambiguous in views and subqueries, so the table
operator isused for tablesin views and subqueries.

For subqueries, thein and subq operators qualify the name of thetablewith
its syntactical containment by the subquery. The sametable isused in the
outer query and the subquery in this example:

select *
from tl
where cll in (select cl1l2 from tl where cll > 100)

The abstract plan identifies them unambiguoudly:
(join
(t_scan t1)
(1 scan i c1ll cl2 (table tl (in (subg 1))))

For views, thein and view operators provide the identification. The query

in this example references atable used in the view:

create view vl

256 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

as
select * from tl where cl2 > 100
select tl.cll from t1, vl

where tl.cl2 = vl.cll

Here isthe abstract plan:
(join
(t_scan t1)
(i_scan i_cl2 (table tl (in (view v1))))

In abstract plans generated by Adaptive Server, the view or subquery-
qualified table names are generated only for the tables where they are
needed to remove name ambiguity. For other tables, only the nameis
generated.

In abstract plans created by the user, view or subquery-qualified tables
names are required in case of ambiguity; both syntaxes are accepted
otherwise.

Identifying indexes

Thei_scan operator requires two operands, the index name and the table
name, as shown here:

(i scan i c12 t1)

To specify that some index should be used, without specifying the index,
substitute empty parenthesis for the index name:

(i _scan () t1)

Specifying join order

Adaptive Server performsjoins of three or more tables by joining two of
the tables, and joining the “abstract plan derived table” from that join to
the next tablein thejoin order. Thisabstract plan derived tableisaflow of
rows, as from an earlier nested-loop join in the query execution.

This query joins three tables:

select *
from tl, t2, t3
where cll = c21

Query Processing and Abstract Plans 257

Introduction

and cl2 = c31
and c22 = 0
and c¢32 = 100

This example shows the binary nature of the join algorithm, using g_join
operators. The plan specifiesthe join order t2, t1, t3:
(join
(join
(scan t2)
(scan t1)
)
(scan t3)

)

The results of thet2-t1 join are then joined to t3. The scan operator in this
exampl e leaves the choice of table scan or index scan up to the optimizer.

Shorthand notation for joins

In general, a N-way left deep nested loops join, with the order t1, t2, t3...,
tN-1, tN is described by:

(join
(join

(join
(join
(scan tl1)
(scan t2)
)
(scan t3)

)

(scan tN-1)
)
(scan tN)
)

This notation can be used as shorthand for the nl_join, nl_g_join, and
m_g_join operators:

(nl join
(scan t1)

(scan t2)
(scan t3)

(scan tN-1)

258 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

(scan tN)

Join order examples

The optimizer could select among several plans for this three-way join
query:

select *

from tl, t2, t3

where cll = c21
and cl2 = c31
and c22 = 0
and c¢32 = 100

Here are afew examples:

e Usec22 asasearch argument on t2, join with t1 on c11, then with t3
on c31:

(nl join
(i _scan 1 c22 t2)
(i scan 1 cl11 t1)
(i _scan 1 c31 t3)

)
e Usethe search argument on t3, and the join order t3, t1, t2:

(nl join
(i scan i ¢332 t3)
(i _scan 1 c12 t1)
(i _scan 1 _c21 t2)

)

* Doafull table scan of t2, if it is small and fitsin cache, still using the
join order t3, t1, t2:

(nl join
(i scan i ¢332 t3)
(i scan i cl2 t1)
(t_scan t2)

)

« Iftlisverylarge, andt2 andt3 individualy qualify alarge part of t1,
but together avery small part, this plan specifiesa STAR join:

(nl join
(i scan i c22 t2)
(i scan i ¢332 t3)

Query Processing and Abstract Plans 259

Introduction

(i_scan 1 cl11 cl2 t1)

)

Thejoin operators are generic in that they implement any of the outer
joins, inner joins, and existence joins; the optimizer chooses the correct
join semantics according to the query semantics.

Match between execution methods and abstract plans

There are somelimitsto join orders and join types, depending on the type
of query. One example is outer joins, such as:

select *
from tl left join t2
on cll = c21

Adaptive Server requiresthe outer member of the outer join to be the outer
table during join processing. Therefore, this abstract planisillegal:
(join
(scan t2)
(scan t1)

)

Attempting to use this plan resultsin an error message, the AP application
fails, and the optimizer makesthe best attempt to compl ete the compilation
of the query.

Specifying join order for queries using views
You can use abstract plansto enforce thejoin order for merged views. This
example creates aview. This view performsajoin of t2 and t3:

create view v2
as

select *

from t2, t3
where c22 = c32

This query performs ajoin with the t2 in the view:

select * from tl, v2
where cll = c21
and c22 = 0

This abstract plan specifiesthe join order t2, t1, t3:

(nl join
(scan t2)

260 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

(scan tl)
(scan t3)

)

Since the table names are not ambiguous, the view qualification is not
needed. However, the following abstract plan is also legal and has the
same meaning:

(nl join
(scan (table t2(in(view v2))))
(scan tl)

(scan (table t3 (in (view v2))))

)
This example joins with t3in the view:

select * from tl, v2
where cll = c31
and c¢32 = 100

This plan uses the join order t3, t1, t2:

(g_join
(scan t3)
(scan tl)
(scan t2)

)

Thisis an example where abstract plans can be used, if needed, to affect
the join order for a query, when set forceplan cannot.

Specifying the join type

Adaptive Server can perform either nested-loop, merge, or hash joins. The
join operator leaves the optimizer free to choose the best join agorithm,
based on costing. To specify a nested-loop join, use the nl_join operator;
for amergejoin, usethe m_join operator, and for ahash join, usetheh_join
operator. Abstract plans captured by Adaptive Server always include the
operator that specifies the algorithm, and not the join operator.

This query specifies ajoin between t1 and t2:

select * from tl, t2
where cl2 = c21 and cll1l = 0

This abstract plan specifies a nested-loop join:

(nl join

Query Processing and Abstract Plans 261

Introduction

(i scan 1 _c11 t1)
(i _scan 1 _c21 t2)

)

The nested-loop plan usesthe index i_c11to limit the scan using the search
clause, and then performs the join with t2, using the index on the join
column.

This merge-join plan uses different indexes:

(m_join
(i scan i c12 t1)
(i _scan 1 _c21 t2)

)

The merge join uses the indexes on the join columns, i_c12 and i_c21, for
the merge keys. This query performs a full-merge join and no sort is
needed.

A mergejoin could also usetheindex oni_c11 to select only the matching
rows, but then a sort is needed to provide the needed ordering.

(m_join
(sort
(i scan i c11 t1)
)
(i scan i c21 t2)

)
Finally, this plan does a hash join and afull table scan on the inner side:
(h_join
(i scan 1 cl11 t1)
(t_scan t2)

Specifying partial plans and hints

262

There are cases when afull plan is not needed. For example, if the only
problemwithaquery planisthat the optimizer chooses atable scan instead
of using anonclustered index, the abstract plan can specify only theindex
choice, and leave the other decisions to the optimizer.

The optimizer could choose atable scan of t3 rather than usingi_c31 for
this query:

select *

Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

from tl, t2, t3

where cll = c21
and cl2 < c31
and c22 = 0
and c¢32 = 100

The following plan, as generated by the optimizer, specifiesjoin order t2,
t1, t3. However, the plan specifies a table scan of t3:

(nl join
(i _scan 1 c22 t2)
(i scan 1 _cl11 t1)
(t_scan t3)

)

Thisfull plan could be modified to specify the use of i_c31 instead:

(nl join
(i scan i _c22 t2)
(i _scan 1 cl11 t1)
(i _scan 1 c¢31 t3)

)

However, specifying only a partial abstract plan isamore flexible
solution. As datain the other tables of that query evolves, the optimal join
order can change. The partial plan can specify just one partial plan item.
For the index scan of 3, the partial planis simply:

(i scan i ¢31 t3)
The optimizer chooses the join order and the access methods for t1 and t2.

Abstract plans are partial by using logical operatorsinstead of physical
operators. For example, the following abstract plan is partial, although it
coversthe whole query, as it lets the optimizer choose the join algorithms
and the access methods:
(join

(scan t1)

(scan t2)

(scan t3)

)

Partial plans may also be incomplete at the top, in that the root of the
abstract plan may cover just apart of the query. If thisisthe case, the
optimizer compl etes the plan:

(nl join
(t_scan tl)
(t_scan t2)

Query Processing and Abstract Plans 263

Introduction

)

However, the plan fragment given in an abstract plan needsto be complete
down to the leafs. For example, the following abstract plan, which reads
“hash join tl outer to something” isillegal.
(h_join
(t_scan tl1)
0

Grouping multiple hints

There may be cases where more than one plan fragment is needed. For
example, you might want to specify that some index should be used for
each table in the query, but leave the join order up to the optimizer. When
multiple hints are needed, they can be grouped with the hints operator:

(hints
(i_scan () t1)
(i_scan () t2)
(i_scan () t3)

)

In this case, the role of the hints operator is purely syntactic; it does not
affect the ordering of the scans.

Thereareno limits on what may be given asahint. Partial join orders may
be mixed with partial access methods. This hint specifiesthat t2 is outer to
t1 in the join order, and that the scan of t3 should use an index, but the
optimizer can choose theindex for t3, the accessmethodsfor t1 and t2, and
the placement of t3 in the join order:

(hints
(g_join
(scan t2)
(scan t1)

)

(i_scan () t3)

Inconsistent and illegal plans using hints

It is possible to describe inconsistent plans using hints, such as this plan
that specifies contradictory join orders:

(hints

264 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

(g_join
(scan t2)
(scan t1)

(g_join
(scan t1)
(scan t2)

)

When the query associated with the plan is executed, the query cannot be
compiled, and an error israised.

Other inconsistent hints do not raise an exception, but may use any of the
specified access methods. This plan specifies both an index scan and a
table scan for the same table:

(hints
(t_scan t3)
(i _scan () t3)

)

In this case, either method may be chosen, the behavior is indeterminate.

Creating abstract plans for subqueries

Subqueries are resolved in several ways in Adaptive Server, and the
abstract plans reflect the query execution steps:

« Materialization —the subquery is executed and results are stored in a
worktableor internal variable. See* Materialized subqueries’ on page
266.

« Flattening —the query isflattened into a join with the tablesin the
main query. See “Flattened subqueries’ on page 266.

* Nesting—the subquery isexecuted once for each outer query row. See
“Nested subqueries’ on page 268.

Abstract plans do not alow the choice of the basic subquery resolution
method. Thisisarule-based decision and cannot be changed during query
optimization. Abstract plans, however, can be used to influence the plans
for the outer and inner queries. In nested subqueries, abstract plans can
also be used to choose where the subquery is nested in the outer query.

Query Processing and Abstract Plans 265

Introduction

Materialized subqueries
This query includes a non correlated subquery that can be materialized:

select *
from tl
where cll = (select count(*) from t2)

Thefirst step in the abstract plan materializes the scalar aggregate in the
subquery. The second step uses the result to scan t1:

(sequence
(scalar_agg
(i _scan 1 _c21 t2)
)

(1 scan i cl1 t1)

Flattened subqueries

Some subqueries can be flattened into joins. The g_join and nl_g_join
operators leave it to the optimizer to detect when an existence join is
needed. For example, this query includes a subquery introduced with
exists:

select * from tl
where cl2 > 0
and exists (select * from t2
where tl.cll = c21
and c22 < 100)

The semantics of the query requirean existencejoin betweent1 andt2. The
joinorder t1, t2 isinterpreted by the optimizer as a semijoin, with the scan
of t2 stopping on the first matching row of t2 for each qualifying row int1:
(join
(scan tl)

(scan t2)

)

Thejoin order t2, t1 requires other means to guarantee the duplicate
elimination:
(join
(distinct
(scan t2)

)

(scan t1)

266 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

)
Using this abstract plan, the optimizer can decide to use:
e A uniqueindex ont2.c21, if one exists, with aregular join.

e The unique reformatting strategy, if no unique index exists. In this
case, the query will probably use the index on c22 to select the rows
into aworktable.

e Theduplicate elimination sort optimization strategy, performing a
regular join and selecting the results into the worktable, then sorting
the worktable.

The abstract plan does not need to specify the creation and scanning of the
worktables needed for the last two options.

For more information on subquery flattening, see “ Flattened subqueries’
on page 266.

Example of changing the join order in a flattened subquery
The query can be flattened to an existence join:

select *
from tl, t2
where cll = c21
and c21 > 100
and exists (select * from t3
where ¢31 != tl.cll)

The“!=" correlation can make the scan of t3 rather expensive. If the join
order ist1, t2, the best placefor t3 in thejoin order depends on whether the
join of t1 and t2 increases or decreases the number of rows, and therefore,
the number of times that the expensive table scan needs to be performed.
If the optimizer failsto find the right join order for t3, the following
abstract plan can be used when the join reduces the number of times that
t3 must be scanned:

(nl join
(scan t1)
(scan t2)
(scan t3)

)

If the join increases the number of times that t3 needs to be scanned, this
abstract plan performs the scans of 3 before the join:

(nl join

Query Processing and Abstract Plans 267

Introduction

Nested subqueries

268

(scan tl)
(scan t3)
(scan t2)

Nested subqueries can be explicitly described in abstract plans:
» Theabstract plan for the subquery is provided.

» Thelocation at which the subquery attaches to the main query is
specified.

Abstract plans allow you to affect the query plan for the subquery, and to
change the attachment point for the subquery in the outer query.

The nested operator specifies the position of the subquery in the outer
query. Subqueries are“ nested over” a specific abstract plan derived table.
The optimizer chooses a spot where all the correlation columns for the
outer query are available, and where it estimates that the subquery needs
to be executed the least number of times.

The following SQL statement contains a correlated expression subquery:

select *
from tl, t2
where cll = c21
and c21 > 100
and cl2 = (select c¢31 from t3
where c¢32 = tl.cll)

The abstract plan shows the subquery nested over the scan of t1:

(nl_join
(nested
(i scan i cl12 t1)
(subg
(scalar _agg
(scan t3)
)
)
)

(i scan i c21 t2)

Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

Aggregationisdescribedin Chapter 2, “Using showplan.” Thescalar_agg
abstract plan operator is necessary because all abstract plans, even partial
ones, need to be complete down to the leafs.

Subquery identification and attachment

Subqueriesin the SQL query are matched against abstract plan subqueries
using their underlying tables. As tables are unambiguously identified, so
are the subqueries. For example:

select
(select cl1l1 from tl where cl2 = t3.c¢c32), c31
from t3
where
c32 > (select c22 from t2 where c2l1 = t3.c31)
plan
“ (nested
(nested
(t_scan t3)
(subg
(1 scan i _cl11 cl2 t1)
)
)
(subg

(i scan i c21 t2)

)n

However, when table names are ambiguous, theidentity of the subquery is
needed to solve the table name ambiguity.

Subqueries are identified with numbers, in the order of their leading
opened parenthesis“(“.

This example has two subqueries; both refer to table ti:

select 1
from tl
where
cll not in (select cl12 from t1)
and cll not in (select cl13 from t1l)

In the abstract plan, the subquery which projects out of c12 isnamed “1”
and the subquery which projects out of c13 isnamed “2”.

(nested
(nested
(t_scan t1)

Query Processing and Abstract Plans 269

Introduction

(subg
(scalar_agg
(1 scan i cl11l cl2 (table tl1 (in (subg 1))))
)
)
)
(subg
(scalar_agg
(1 scan i c13 (table tl (in (subg 2))))
)

In this query, the second subquery is nested in the first:

select * from tl
where cll not in
(select cl2 from tl
where c¢l11 not in
(select c13 from tl)

In thiscase, the subquery that projectsout of c12 isalso named “1” and the
subquery that projects out of ¢13 is also named “2".

(nested
(t_scan tl
(subg
(scalar_agg
(nested
(i scan i _cl2 (table tl (in (subg 1))))
(subg
(scalar_ agg
(i_scan i _c21 (table tl (in (subg 2))))
)

More subquery examples: reading ordering and attachment

The nested operator hasthe abstract plan derived table asthefirst operand
and the nested subquery as the second operand. This allows an easy
vertical reading of the join order and subquery placement:

select *
from tl, t2, t3

270 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

where cl2 = 0
and cll = c21
and c22 = c32
and 0 < (select c21 from t2 where c22 = tl.cll)

In the plan, the join order ist1, t2, t3, with the subquery nested over the
scan of t1:

(nl join
(nested
(i scan 1 cl11 t1)
(subg
(t_scan (table t2 (in (subg 1)))
)
)
(i _scan i c21 t2)
(i _scan 1 ¢332 t3)

Modifying subquery nesting

If you modify the attachment point for asubquery, you must choose a point
at which all of the correlation columns are available.This query is
correlated to two of the tablesin the outer query:

select *
from tl, t2, t3
where cl2 = 0
and cll = c21
and c22 = c32
and 0 < (select c¢31 from t3 where c¢31 = tl.cll
and c32 = t2.c22)

This plan uses the join order t1, t2, t3, with the subquery nested over the

t1-t2 join:
(nl join
(nested

(nl join
(i_scan i_cll cl2 t1)
(1_scan i c22 t2)

)

(subg

(t_scan (table t3 (in (subg 1))))
)
)

(i scan i ¢332 t3)

Query Processing and Abstract Plans 271

Introduction

)

Since the subquery requires columns from both outer tables, it would be
incorrect to nest it over the scan of t1 or the scan of t2; such errors are
silently corrected during optimization.

However, the following abstract plan makes the legal request to nest the
subquery over the three tablesjoin:

(nested
(nl join
(i_scan i_cll cl2 t1)
(1 scan i c22 t2)
(1 scan 1 c32 t3)
)
(subg
(t_scan (table t3 (in (subg 1))))
)

Abstract plans for materialized views

In most cases, view processing merges the view definition in the main
guery. There are, however, cases when aview needsto be materialized, as
in the case of a self-join:

create view v3(cc31l, sum c32)
as

select c31, sum(c32)

from t3

group by c31

select *
from v3 a, v3 b
where a.c31 = b.c31

In such a case, the abstract plan exposes the worktable and the store
operator that materializesit. The two scans of the worktable are identified
through their correlation names:

(sequence
(store
(group_ sorted
(i _scan 1 _¢31 t3)

)

272 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

(m_join
(sort
(t_scan (work t (a Worktable)))
(sort
(t_scan (work t (b Worktable)))
)
)
)

The handling of vector aggregation in an abstract plan is described in the
next section.

Abstract plans for queries containing aggregates
This query returns a scalar aggregate:
select max(cll) from t1

Thereisaphysical operator that implements scalar aggregation, hence, the
optimizer has no choice. However, choosing an index on c11 allows the
MAX() optimization:

(scalar agg
(i _scan icll t1)

)

Sincethe scalar aggregateisthetop abstract plan operator, removing it and
using the following partial plan has the same outcome:

(i _scan icll t1)

Aswasdiscussed in the section on subqueries, the scalar_agg abstract plan
istypically needed whenit is part of asubquery and the abstract plan must
cover the parent query aswell.

Vector aggregation isdifferent, in that there are several physical operators
to implement the group logical operator, which means that the optimizer
has a choice to make. Thus, the abstract plan can forceit.

select max(cll)
from tl
group by cl2

Query Processing and Abstract Plans 273

Introduction

The following abstract plan examples force each of the three vector
aggregation algorithms:

Note group_sorted requires an ordering on the grouping column, so it
needs to use an index.

(group sorted
(1 scan 1 c12 t1)
)
(group hashing
(t_scan t1)
)

(group inserting
(t_scan tl)
)

Abstract plans for queries containing unions

The union abstract plan operator describes plans for SQL queries that
contain unions:

select*
from
tl1,
(select * from t2
union
select * from t3
) u(ul, u2)
where cll=ul
plan
“(nl join
(union
(t_scan t2)
(t_scan t3)
)
(1 scan i c11 t1)

)II

Therearetwo typesof UNION in SQL: UNION DISTINCT and UNION [ALL].
UNION [ALL] isthe default.

274 Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

Them_union_distinct and h_union_distinct abstract plan operatorsforcethe
merge or hash-based UNION DISTINCT duplicatesremoval. It isillegal to
use them with aUNION ALL. The merge-based algorithm needs, from each
of the union children, an ordering covering all union projection columns.

In the following example, the needed ordering is provided, for the first
child, by the (c11, <12) compositeindex and, for the second child, by
the sort.

select cl1l, cl2 from t1l
union distinct
select c21, c22 from t2
plan
“(m_union distinct

(1 scan i cl11 cl2 t1)

(sort

(t_scan t2)

)

)II

The union_all and m_union_all abstract plan operators force the append- or
merge-based UNION ALL. Itisillegal to usethem with aUNION DISTINCT.
The merge algorithm needs no ordering for itself; it makes any useful
ordering from the children available to the parent.

In the following example, the ordering provided by thetwo i_scan
operatorsis made available, by their m_union_all parent, to the m_join
above.

select *
from
tl,
(select c21, c22 from t2
union
select ¢31, c¢32 from t3
) u(ul, u2)
where cll=ul
plan
“(m_join
(m_union all
(1 scan i c21 t2)
(1 scan i ¢31 t3)
)
(1 scan 1 cl11 t1)

)n

Query Processing and Abstract Plans 275

Introduction

Using abstract plans when queries need ordering
An ordering is needed either explicitly, in an ORDER BY query, or
implicitly by merge-based operators such asm_join, m_union_distinct, and
group_sorted.

select *
from
tl1,
(select c21, c22 from t2
union distinct
select ¢31, c32 from t3
) u(ul, u2)
where cll=ul
order by cll, u2
plan
“(m_join
(m_union distinct
(i_scan i_c21_c22 t2)
(sort
(t_scan t3)
)
)
(1 scan i cl1 t1)

)II

Specifying the reformatting strategy

276

select *
from tl, t2

Anordering isproduced either explicitly, by the sort abstract plan operator
(the optimizer build the sort key on all columns known to need an
ordering), or implicitly by ani_scan on the indexed columns.

All merge-based operators that require ordering preserveit in their results
for aparent that also requiresit.

In the following example, thei_scan of t1 providesthe ordering needed by
the m_join. Thei_scan of t2, and the sort over t3's scan, provides the
ordering needed by m_union_distinct. This ordering also provides the
ordering needed by the m_join. Finally, no top sort isrequired as the
ordering needed by ORDER BY is provided by the m_join.

In this query, t2 is very large, and has no index:

Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

where cll > 0
and cl2 = c21
and c22 = 0

The abstract plan that specifies the reformatting strategy ont2 is:

(nl join
(t_scan t1)
(store ind
(t_scan t2)
)
)

Thestore_ind abstract plan operator must be placed on theinner side of an
nl_join. It can be placed over any abstract plan; thereisno longer asingle
table scan limitation. Thelegacy (scan (store...)) syntaxisstill
accepted.

Specifying the OR strategy

An OR strategy uses aset of index scansto limit the scan with each of the
OR terms, then passes the resulting RIDs through a UnionDistinct operator
to get, with aRidJoin from the tabl e, the tuples corresponding to the unique
RIDs.

The m_scan (multi-scan) abstract plan operator forcesindex union, hence
the OR strategy:

select * from tl

where cll > 10 or cl2 > 100
plan

“(m_scan tl1)”

When the store operator is not specified

Storing the stream of tuples into a worktable to meet the intra-operator
needs of an algorithm (Sort, Groupl nserting, and so on), istreated as a
implementation detail of the algorithm and thusis not exposed in the
abstract plan.

Query Processing and Abstract Plans 277

Introduction

Abstract plans expose only the worktables created for inter-operator
reasons, such as the self-joined materialized view. In such a case, none of
the operators needs awork table. The causeis, rather, the global nature of
the plan, of computing an intermediate derived table once and using it
twice.

Abstract plans for parallel processing

278

Partitioned tables scanned in parallel produce partitioned streams of
tuples. Different operators have specific needsfor parallel processing. For
instance, in al joins, either both children must be equi-partitioned or one
child must be replicated.

The abstract plan xchg operator forces the optimizer to repartition, on-the-
fly, in nways, its child derived table. The abstract plan only givesthe
degree. The optimizer chooses the useful partitioning columns and style
(hash, range, list, or round-robin).

In the following example, assume that t1 and t2 are hash partitioned two
ways and three ways on the join columns, andi_c21 isalocal index:

select *
from tl, t2
where cll=c21

The following abstract plan repartitionst1 three ways, does a three-way
parallel nl_join, serializestheresults, and returns asingle datastream to the
client:

(xchg 1
(nl_join
(xchg 3
(t_scan t1)
)
(1 scan i c21 t2)
)
)

It is not necessary to specify t2's parallel scan. It is hash partitioned three
ways, and, asit’sjoined with an xchg-3, no other plan would be legal.

Thefollowing abstract plan scans and sortst1 and t2 in parallel, aseach is
partitioned, then serializes them for the m_join:

(m_join
(xchg 1

Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

(sort
(t_scan t1)
)
)
(xchg 1
(sort
(t_scan t2)
)
)
)
(prop tl (parallel 2))
(prop t2 (parallel 3))

The prop-parallel abstract plan construct is used to make sure that the
optimizer chooses the parallel scan with the native degree.

Tips on writing abstract plans

Here are some additional tips for writing and using abstract plans:

* Look at the current plan for the query and at plans that use the same
query execution steps as the plan you need to write. It is often easier
to modify an existing plan than to write a full plan from scratch.

e Capturethe plan for the query.
e Usesp_help_gplan to display the SQL text and plan.

« Edit this output to generate a create plan command, or attach an
edited plan to the SQL query using the plan clause.

« Itisoften best to specify partial plansfor query tuning in caseswhere
most optimizer decisions are appropriate, but only an index choice,
for example, needs improvement.

By using partia plans, the optimizer can choose other paths for other
tables as the data in other tables changes.

e Once saved, abstract plans are static. Data volumes and distributions
may change so that saved abstract plans are no longer optimal.

Query Processing and Abstract Plans 279

Comparing plans before and after

Subsequent tuning changes made by adding indexes, partitioning a
table, or adding buffer pools may mean that some saved plans are not
performing as well as possible under current conditions. Most of the
time, you want to operate with a small number of abstract plans that
solve specific problems.

Perform periodic plan checks to verify that the saved plans are still
better than the plan that the optimizer would choose.

Comparing plans before and after

280

Abstract query plans can be used to assess the impact of an Adaptive
Server software upgrade or system tuning changes on your query plans.
You must save plans before the changes are made, perform the upgrade or
tuning changes, and then save plans again and compare the plans. The
basic set of stepsis:

1 Enable server-wide capture mode by setting the configuration
parameter abstract plan dump to 1. All plans are then captured in the
default group, ap_stdout.

2 Allow enough time for the captured plans to represent most of the
gueriesrun on the system. You can check whether additional plansare
being generated by checking whether the count of rowsin the
ap_stdout group in sysqueryplans is stable:

select count (*) from sysqueryplans where gid = 2

3 Copy al plansfromap_stdout to ap_stdin (or some other group, if you
do not want to use server-wide plan load mode), using
sp_copy_all_gplans.

Drop al query plans from ap_stdout, using sp_drop_all_gplans.
Perform the upgrade or tuning changes.

Allow sufficient time for plans to be captured to ap_stdout.

N o o b~

Compare plansin ap_stdout and ap_stdin, using the diff mode
parameter of sp_cmp_all_gplans. For example, this query compares
al plansin ap_stdout and ap_stdin:

sp_cmp_all gplans ap stdout, ap stdin, diff

Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

Thisdisplays only information about the plansthat are different in the
two groups.

Effects of enabling server-wide capture mode

When server-wide capture mode is enabled, plansfor al queriesthat can
be optimized are saved in all databases on the server. Some possible
system administration impacts are:

When plans are captured, the plan is saved in sysqueryplans and log
records are generated. The amount of space required for the plansand
log records depends on the size and compl exity of the SQL statements
and query plans. Check space in each database where users will be
active.

You may need to perform more frequent transaction log dumps,
especialy in the early stages of server-wide capture when many new
plans are being generated.

If users execute system procedures from the master database, and
installmaster was |oaded with server-wide plan capture enabled, then
plans for the statements that can be optimized in system procedures
are saved in master.sysqueryplans.

Thisis aso true for any user-defined procedures created while plan
capture was enabled. You may want to provide a default database at
login for all users, including System Administrators, if spacein
master is limited.

The sysqueryplans table uses datarows locking to reduce lock
contention. However, especially when alarge number of new plans
are being saved, there may be a slight impact on performance.

While server-wide capture mode is enabled, using bcp saves query
plansin the master database. If you perform bep using alarge number
of tables or views, check sysqueryplans and the transaction log in
master.

Query Processing and Abstract Plans 281

Abstract plans for stored procedures

Time and space to copy plans

If you have alarge number of query plansin ap_stdout, be sure thereis
sufficient space to copy them on the system segment before starting the
copy. Use sp_spaceused to check the size of sysqueryplans, and
sp_helpsegment to check the size of the system segment.

Copying plans also requires space in the transaction log.

sp_copy_all_gplans calls sp_copy_gplan for each plan in the group to be
copied. If sp_copy_all_gplans failsat any time dueto lack of space or other
problems, any plans that were successfully copied remain in the target
query plan group.

Abstract plans for stored procedures

282

For abstract plans to be captured for the SQL statements that can be
optimized in stored procedures:

e Theproceduresmust be created while plan capture or plan association
mode is enabled. (This saves the text of the procedurein
sysprocedures.)

e Theprocedure must be executed with plan capture mode enabled, and
the procedure must be read from disk, not from the procedure cache.

This sequence of steps captures the query text and abstract plans for all
statements in the procedure that can be optimized:

set plan dump dev_plans on

go

create procedure myproc as ...
go

exec myproc

go

If the procedure is in cache, so that the plans for the procedure are not
being captured, you can execute the procedure with recompile. Similarly,
once a stored procedure has been executed using an abstract query plan,
the planin the procedure cacheis used so that query plan association does
not take place unless the procedureis read from disk.

set fmtonly on could be used to capture plansfor astored procedure without
actually executing the statementsin a stored procedure.

Adaptive Server Enterprise

CHAPTER 9 Abstract Query Plan Guide

Procedures and plan ownership

When plan capture mode is enabled, abstract plans for the statementsin a
stored procedure that can be optimized are saved with the user 1D of the
owner of the procedure.

During plan association mode, association for stored proceduresis based
ontheuser ID of the owner of the procedure, not the user who executesthe
procedure. This means that once an abstract query plan is created for a
procedure, all users who have permission to execute the procedure use the
same abstract plan.

Procedures with variable execution paths and optimization

Executing a stored procedure saves abstract plans for each statement that
can be optimized, even if the stored procedure contains control-of-flow
statements that can cause different statements to be run depending on
parameters to the procedure or other conditions. If the query isrun a
second time with different parametersthat use adifferent code path, plans
for any statements that were optimized and saved by the earlier execution,
and the abstract plan for the statement is associated with the query.

However, abstract plans for procedures do not solve the problem with
procedures with statements that are optimized differently depending on
conditions or parameters. One exampleisaprocedure where usersprovide
the low and high values for a between clause, with a query such as:

select title id
from titles
where price between @lo and @hi

Depending on the parameters, the best plan could either beindex access or
atable scan. For these procedures, the abstract plan may specify either
access method, depending on the parameters when the procedure was first
executed. If abstract plans are saved while executing queries or stored
procedures in tempdb, the abstract plans are lost if the server is rebooted.

For more information on optimization of procedures, see Performance &
Tuning: Optimizer.

Query Processing and Abstract Plans 283

Ad hoc queries and abstract plans

Ad hoc queries and abstract plans

Abstract plan capture savesthe full text of the SQL statement and abstract
plan association is based on the full text of the SQL query. If users submit
ad hoc SQL statements, rather than using stored procedures or Embedded
SQL, abstract plans are saved for each different combination of query
clauses. This can result in avery large number of abstract plans.

If users check the price of a specific title_id using select statements, an
abstract plan is saved for each statement. The following two queries each
generate an abstract plan:

select price from titles where title id "T19245"
select price from titles where title id = "T40007"

In addition, there is one plan for each user, that is, if several users check
for thetitle_id “T40007”, aplanis save for each user ID.

If such queries are included in stored procedures, there are two benefits:
» Only only one abstract plan is saved, for example, for the query:

select price from titles where title id =
@title_id

e Theplanissaved with the user ID of the user who owns the stored
procedure, and abstract plan association is made based on the
procedure owner’sID.

Using Embedded SQL, the only abstract plan is saved with the host
variable:

select price from titles
where title id = :host var id

284 Adaptive Server Enterprise

ciarTER 10 Managing Abstract Plans with
System Procedures

This chapter provides an introduction to the basi ¢ functionality and use of
the system procedures for working with abstract plans. For detailed
information on each procedure, see the guide Reference Manual:

Procedures.
Topic Page
System procedures for managing abstract plans 285
Managing an abstract plan group 286
Finding abstract plans 290
Managing individual abstract plans 290
Managing all plansin agroup 294
Importing and exporting groups of plans 298

System procedures for managing abstract plans

The system procedures for managing abstract plans work on individual
plans or on abstract plan groups.

e Managing an abstract plan group
* sp_add_gpgroup
* sp_drop_gpgroup
* sp_help_gpgroup

* sp_rename_gpgroup
e Finding abstract plans
* sp_find_gplan
e Managing individual abstract plans
* sp_help_gplan

Query Processing and Abstract Plans 285

Managing an abstract plan group

* sp_copy_gplan
* sp_drop_gplan

* sp_cmp_gplans
* sp_set _gplan
e Managing al plansin agroup
* sp_copy_all_gplans
* sp_cmp_all_gplans
e sp_drop_all_gplans
e Importing and exporting groups of plans
* sp_export_gpgroup

® sp_import_qpgroup

Managing an abstract plan group

Creating a group

286

You can use system procedures to create, drop, rename, and provide
information about an abstract plan group.

sp_add_gpgroup creates and names an abstract plan group. Unlessyou are
using the default capture group, ap_stdout, you must create a plan group
before you can begin capturing plans. For example, to start saving plansin
agroup called dev_plans, you must create the group, thenissuetheset plan
dump command, specifying the group name:

sp_add _gpgroup dev_plans
set plan dump dev_plans on
/*SQL queries to capture*/

Only a System Administrator or Database Owner can add abstract plan
groups. Once agroup is created, any user can dump or load plansfrom the
group.

Adaptive Server Enterprise

CHAPTER 10 Managing Abstract Plans with System Procedures

Dropping a group
sp_drop_gpgroup drops an abstract plan group.
The following restrictions apply to sp_drop_gpgroup:

e Only aSystem Administrator or Database Owner can drop abstract
plan groups.

* You cannot drop agroup that contains plans. To removeall plansfrom
agroup, use sp_drop_all_gplans, specifying the group name.

e You cannot drop the default abstract plan groups ap_stdin and
ap_stdout.

This command drops the dev_plans plan group:

sp_drop_gpgroup dev_plans

Getting information about a group

sp_help_gpgroup printsinformation about an abstract plan group, or about
all abstract plan groupsin adatabase.

When you use sp_help_gpgroup without agroup name, it prints the names
of al abstract plan groups, the group I Ds, and the number of plansin each

group:

sp_help gpgroup

Query plan groups in database ‘pubtune’

Group GID Plans
ap stdin 1
ap_stdout 2
p_prod 4
priv_test 8
ptest 3
ptest2 7

When you use sp_help_gpgroup with a group name, the report provides
statistics about plans in the specified group. This example reports on the
group ptest2:

sp_help gpgroup ptest2
Query plans group 'ptest2', GID 7

Total Rows Total QueryPlans

Query Processing and Abstract Plans 287

Managing an abstract plan group

452 189
sysqueryplans rows consumption, number of query
plans per row count

Rows Plans

5 2

3 68

2 119
Query plans that use the most sysqueryplans rows
Rows Plan

5 1932533918
5 1964534032
Hashkeys

123
There is no hash key collision in this group.

When reporting on an individual group, sp_help_gpgroup reports:

e Thetotal number of abstract plans, and thetotal number of rowsinthe
sysqueryplans table.

e The number of plans that have multiple rows in sysqueryplans. They
are listed in descending order, starting with the plans with the largest
number of rows.

» Information about the number of hash keys and hash-key collisions.
Abstract plans are associated with queries by a hashing algorithm
over the entire query.

When a System Administrator or the Database Owner executes
sp_help_gpgroup, the procedure reports on all of the plansin the database
or in the specified group. When any other user executes sp_help_gpgroup,
it reports only on plans that he or she owns.

sp_help_gpgroup provides several report modes. The report modes are;

Mode Information returned

full The number of rows and number of plansin the group, the number of plans that use two or more
rows, the number of rows and plan IDs for the longest plans, and number of hash keys, and has-
key collision information. This is the default report mode.

stats All of the information from the full report, except hash-key information.

hash The number of rows and number of abstract plansin the group, the number of hash keys, and hash-
key collision information.

288 Adaptive Server Enterprise

CHAPTER 10 Managing Abstract Plans with System Procedures

Mode Information returned

list The number of rows and number of abstract plansin the group, and the following information for
each query/plan pair: hash key, plan ID, first few characters of the query, and the first few
characters of the plan.

queries The number of rows and number of abstract plansin the group, and the following information for
each query: hash key, plan ID, first few characters of the query.

plans The number of rows and number of abstract plansin the group, and the following information for
each plan: hash key, plan ID, first few characters of the plan.

counts The number of rows and number of abstract plansin the group, and the following information for
each plan: number of rows, number of characters, hash key, plan ID, first few characters of the
query.

This example shows the output for the counts mode:

sp_help gpgroup ptestl, counts
Query plans group 'ptestl', GID 3

Total Rows Total QueryPlans

Query plans in this group

Rows Chars hashkey id query
3 623 1801454852 876530156 select title from titles
3 576 476063777 700529529 select au_lname, au_fname...
3 513 444226348 652529358 select aul.au lname, aul....
3 470 792078608 716529586 select au_lname, au_ fname...
3 430 789259291 684529472 select aul.au lname, aul....
3 425 1929666826 668529415 select au_lname, au_fname...
3 421 169283426 860530099 select title from titles ...
3 382 571605257 524528902 select pub name from publ...
3 355 845230887 764529757 delete salesdetail where
3 347 846937663 796529871 delete salesdetail where
2 379 1400470361 732529643 update titles set price =...

Renaming a group

A System Administrator or Database Owner can rename an abstract plan
group with sp_rename_gpgroup. This example changes the name of the
group from dev_plans to prod_plans:

Query Processing and Abstract Plans 289

Finding abstract plans

sp_rename_gpgroup dev_plans, prod plans

The new group name cannot be the name of an existing group.

Finding abstract plans

sp_find_gplan searches both the query text and the plan text to find plans
that match a given pattern.

This example finds all plans where the query includes the string “from
titles’:
sp_find gplan "%from titles%"

This example searches for all abstract plans that perform atable scan:

))

sp_find gplan "%t_scan%"

When aSystem Administrator or Database Owner executessp_find_gplan,
the procedure examines and reports on plans owned by all users. When
other users execute the procedure, it searches and reports on only plans
that they own.

To search just one abstract plan group, specify the group name with
sp_find_gplan. Thisexamplesearchesonly thetest_plans group, finding all
plansthat use a particular index:

sp_find gplan "%i_scan title_ id ix%", test_plans

For each matching plan, sp_find_gplan printsthe group 1D, plan ID, query
text, and abstract plan text.

Managing individual abstract plans

290

You can use system procedures to print the query and text of individual
plans, to copy, drop, or compare individual plans, or to change the plan
associated with a particular query.

Adaptive Server Enterprise

CHAPTER 10 Managing Abstract Plans with System Procedures

Viewing a plan

sp_help_gplan reportson individual abstract plans. It providesthree types
of reports that you can specify: brief, full, and list. The brief report prints
only thefirst 78 characters of the query and plan; use full to see the entire
query and plan, or list to display only the first 20 characters of the query
and plan.

This example prints the default brief report:

sp_help gplan 588529130
gid hashkey id

8 1460604254 588529130

select min(price) from titles
plan

(plan
(1 _scan type price titles)
()
)
(prop titles
(parallel

A System Administrator or Database Owner can use sp_help_gplan to
report on any plan inthe database. Other users can only view the plansthat
they own.

sp_help_gpgroup reportson al plansin agroup. For moreinformation see
“Getting information about a group” on page 287.

Copying a plan to another group

sp_copy_gplan copies an abstract plan from one group to another existing
group. This example copies the plan with plan ID 316528161 from its
current group to the prod_plans group:

sp_copy gplan 316528161, prod plans

sp_copy_gplan checks to make sure that the query does not already exist
in the destination group. If a possible conflict exists, it runs
sp_cmp_gplans to check plansin the destination group. In addition to the
message printed by sp_cmp_gplans, sp_copy_gplan prints messages when:

Query Processing and Abstract Plans 291

Managing individual abstract plans

e Thequery and plan you are trying to copy aready existsin the
destination group

e Another plan in the group has the same user 1D and hash key

» Another plan in the group has the same hash key, but the queries are
different

If thereisahash-key collision, the planis copied. If the plan already exists
inthedestination group or if it would give an association key collision, the
plan is not copied. The messages printed by sp_copy_gplan contain the
plan ID of the plan in the destination group, so you can use sp_help_gplan
to check the query and plan.

A System Administrator or the Database Owner can copy any abstract
plan. Other users can copy only plansthat they own. Theoriginal planand
group are not affected by sp_copy_gplan. The copied plan isassigned a
new plan ID, the ID of the destination group, and the user 1D of the user
who ran the query that generated the plan.

Dropping an individual abstract plan

sp_drop_gplan dropsindividual abstract plans. This example drops the
specified plan:

sp_drop_gplan 588529130

A System Administrator or Database Owner can drop any abstract planin
the database. Other users can drop only plans that they own.

To find abstract plan IDs, use sp_find_gplan to search for plans using a
pattern from the query or plan, or sp_help_gpgroup to list the plansin a

group.

Comparing two abstract plans

292

Given two plan IDs, sp_cmp_gplans compares two abstract plans and the
associated queries. For example:

sp_cmp _gplans 588529130, 1932533918

sp_cmp_gplans prints one message reporting the comparison of the query,
and a second message about the plan, as follows:

e For the two queries, one of:;

Adaptive Server Enterprise

CHAPTER 10 Managing Abstract Plans with System Procedures

e Thequeries are the same.
e Thequeriesare different.
e Thequeries are different but have the same hash key.
e Fortheplans
e Thequery plans are the same.
e Thequery plans are different.
This example comparestwo plans where the queries and plans both match:

sp_cmp gplans 411252620, 1383780087
The queries are the same.
The query plans are the same.

This example compares two plans where the queries match, but the plans
are different:

sp_cmp_gplans 2091258605, 647777465
The queries are the same.
The query plans are different.

sp_cmp_gplans returns a status value showing the results of the
comparison. The status values are shown in Table 10-1

Table 10-1: Return status values for sp_cmp_gplans

Return value Meaning

0 The query text and abstract plans are the same.

+1 The queries and hash keys are different.

+2 The queries are different, but the hash keys are the same.
+10 The abstract plans are different.

100 One or both of the plan IDs does not exist.

A System Administrator or Database Owner can compare any two abstract
plansin the database. Other users can compare only plans that they own.

Changing an existing plan

sp_set_gplan changes the abstract plan for an existing plan ID without
changing the ID or the query text. It can be used only when the plan text
is 255 or fewer characters.

sp_set gplan 588529130, "(i_scan title ix titles)"

Query Processing and Abstract Plans 293

Managing all plans in a group

A System Administrator or Database Owner can change the abstract plan
for any saved query. Other users can modify only plans that they own.

When you execute sp_set_gplan, the abstract plan is not checked against
the query text to determine whether the new plan isvalid for the query, or
whether the tables and indexes exist. To test the validity of the plan,
execute the associated query.

You can al so use create plan and the plan clause to specify the abstract plan
for aquery. See“ Creating plansusing SQL” on page 247.

Managing all plans in a group

Copying all plans in

294

These system procedures help manage groups of plans:
* sp_copy_all_gplans
* sp_cmp_all_gplans

* sp_drop_all_gplans

agroup

sp_copy_all_gplans copies all of the plansin one abstract plan group to
another group. This example copies all of the plans from the test_plans
group to the helpful_plans group:

sp_copy all gplans test plans, helpful plans

Thehelpful_plans group must exist beforeyou executesp_copy_all_gplans.
It can contain other plans.

sp_copy_all_gplans copies each plan in the group by executing
sp_copy_gplan, so copying a plan may fail for the same reasons that
sp_copy_gplan might fail. See “Comparing two abstract plans’ on page
292.

Each plan iscopied as aseparate transaction, and failureto copy any single
plan does not cause sp_copy_all_gplans to fail. If sp_copy_all_gplans fails
for any reason, and has to be restarted, you see a set of messages for the
plansthat have already been successfully copied, telling you that they exist
in the destination group.

Adaptive Server Enterprise

CHAPTER 10 Managing Abstract Plans with System Procedures

A new plan ID isassigned to each copied plan. The copied plans have the
original user'sD. To copy abstract plans and assign new user IDs, you
must use sp_export_gpgroup and sp_import_gpgroup. See “Importing and
exporting groups of plans’ on page 298.

A System Administrator or Database Owner can copy al plansin the
database. Other users can copy only plans that they own.

Comparing all plans in a group
sp_cmp_all_gplans compares all abstract plansin two groups and reports:
e The number of plans that are the same in both groups

* Thenumber of plansthat have the same association key, but different
abstract plans

* The number of plansthat are present in one group, but not the other
This example compares the plansin ap_stdout and ap_stdin:

sp_cmp_all gplans ap stdout, ap_ stdin
If the two query plans groups are large, this might take some
time.
Query plans that are the same
count

338
Different query plans that have the same association key

25

Query Processing and Abstract Plans 295

Managing all plans in a group

With the additional specification of areport-mode parameter,
sp_cmp_all_gplans provides detailed information, including the IDs,
queries, and abstract plans of the queriesin the groups. The mode
parameter |ets you get the detailed information for al plans, or just those
with specific types of differences.Table 10-2 shows the report modes and
what type of information is reported for each mode.

Table 10-2: Report modes for sp_cmp_all_gplans
Mode Reported information

counts The counts of: plansthat are the same, plans that have the same
association key, but different groups, and plansthat exist in one
group, but not the other. Thisisthe default report mode.

brief Theinformation provided by counts, plusthe | Ds of the abstract
plansin each group where the plans are different, but the
association key isthe same, and the IDs of plansthat arein one
group, but not in the other.

same All counts, plusthe IDs, queries, and plansfor al abstract plans
where the queries and plans match.

diff All counts, plusthe IDs, queries, and plansfor al abstract plans
where the queries and plans are different.

first All counts, plusthe IDs, queries, and plansfor al abstract plans
that arein the first plan group, but not in the second plan group.

second All counts, plusthe IDs, queries, and plansfor all abstract plans
that are in the second plan group, but not in the first plan group.

offending All counts, plusthe IDs, queries, and plansfor al abstract plans

that have different association keys or that do not exist in both
groups. Thisisthe combination of the diff, first, and second
modes.

full All counts, plusthelDs, queries, and plansfor al abstract plans.
Thisis the combination of same and offending modes.

This example shows the brief report mode:
sp_cmp_all gplans ptestl, ptest2, brief

If the two query plans groups are large, this might take some time.
Query plans that are the same

39

296 Adaptive Server Enterprise

CHAPTER 10 Managing Abstract Plans with System Procedures

ptestl

764529757
780529814
796529871
908530270

ptest2

1580532664
1596532721
1612532778
1724533177

Query plans present only in group ’‘ptestl’

524528902
1292531638
1308531695

Query plans present only in group ’‘ptest2’

count
1
id
2108534545

Dropping all abstract plans in a group

sp_drop_all_gplans dropsall abstract plansin agroup. Thisexampledrops
all abstract plansin the dev_plans group:

sp_drop_all gplans dev_plans

When a System Administrator or the Database Owner executes
sp_drop_all_gplans, al plans belonging to al users are dropped from the
specified group. When another user executesthisprocedure, it affectsonly
the plans owned by that users.

Query Processing and Abstract Plans 297

Importing and exporting groups of plans

Importing and exporting groups of plans

sp_export_gpgroup and sp_import_gpgroup copy groups of plans between
sysqueryplans and a user table. This allows a System Administrator or
Database Owner to:

» Copy abstract plans from one database to another on the same server

» Create atablethat can be copied out of the current server with bep,
and copied into another server

» Assign different user IDsto existing plans in the same database

Exporting plans to a user table

sp_export_gpgroup copiesall plansfor aspecific user from an abstract plan
group to a user table. This example copies plans owned by the Database
Owner (dbo) from the fast_plans group, creating atable called transfer:

sp_export gpgroup dbo, fast plans, transfer

sp_export_gpgroup USeS select...into to create atable with the same
columns and datatypes as sysqueryplans. If you do not have the

select into/bulkcopy/plisort option enabled in the database, you can specify
the name of another database. This command creates the export tablein
tempdb:

sp_export gpgroup mary, ap_stdout, "tempdb..mplans"

The table can be copied out using bcp, and copied into a table on another
server. The plans can aso be imported to sysqueryplans in another
database on the same server, or the plans can be imported into
sysqueryplans in the same database, with a different group name or user
ID.

Importing plans from a user table

298

sp_import_gpgroup copies plansfrom tables created by sp_export_gpgroup
into agroup in sysqueryplans. Thisexample copiestheplansfromthetable
tempdb.mplans into ap_stdin, assigning the user ID for the Database
Owner:

sp_import gpgroup "tempdb..mplans", dbo, ap_ stdin

Adaptive Server Enterprise

CHAPTER 10 Managing Abstract Plans with System Procedures

You cannot copy plansinto a group that already contains plans for the
specified user.

Query Processing and Abstract Plans 299

Importing and exporting groups of plans

300 Adaptive Server Enterprise

cuarTeErR 11 Query Processing Metrics

Topic Page
Overview 301
Executing QP metrics 302
Accessing metrics 302
Using metrics 304
Clearing the metrics 306
Restricting query metrics capture 307
Understanding uid in sysguerymetrics 307

Overview

Query processing (QP) metrics identify and compare empirical metric
valuesin query execution. When aquery is executed, it is associated with
a set of defined metrics that are the basis for comparison in QP metrics.

Captured metricsinclude:

* CPU executiontime—thetime, in milliseconds, it takesto execute the

query.

» Elapsedtime—thetime, in milliseconds, from after the compileto the

end of the execution.
e Logical I/0O —the number of logical 1/0 reads.
e Physical 1/0 —the number of physical I/O reads.

e Count —the number of times a query is executed.

e Abort count —the number of timesaquery is aborted by the resource

governor due to aresource limit being exceeded.

Each metric, except count and abort count, has three values: minimum,

maximum, and average.

Query Processing and Abstract Plans

301

Executing QP metrics

Executing QP metrics

You can activate and use QP metrics at the server level or at the session level.

Attheserver level, usesp_configure with theenable metrics capture option. The
QP metrics for ad hoc statements are captured directly into a system catal og,
while the QP metrics for statementsin a stored procedure are saved in a
procedure cache. When the stored procedure or query in the statement cacheis
flushed, the respective captured metrics are written to the system catal og.

sp_configure "enable metrics capture", 1

At asession level, use set metrics_capture on/off.
set metrics_capture on/off

Accessing metrics

QP metrics are always captured in the default running group, whichisgroup 1
in each respective database. Use sp_metrics ‘backup’ to move saved QP metrics
from the default running group to a backup group. Access metric information
using a select statement with order by against the sysquerymetrics view. See
“sysquerymetrics view” on page 302 for details.

You can also use a data manipulation language (DML) statement to sort the
metric information and identify the specific queries for evaluation. See
Adaptive Server Enterprise Component Integration Services User’s Guide,
Chapter 2, “Understand Component Integration Services,” for more
information about DML commands.

sysquerymetrics view

302

Field Definition
uid User ID
gid Group ID
id Unique ID

hashkey Hashkey over the SQL query text

sequence | Sequencenumber for arow when multiple rowsarerequired for thetext
of the SQL

exec_min | Minimum execution time

Adaptive Server Enterprise

CHAPTER 11 Query Processing Metrics

Field Definition

exec_max | Maximum execution time
exec_avg | Average executiontime
elap_min Minimum elapsed time
elap_max | Maximum elapsed time
elap_avg | Average elapsed time
lio_min Minimum logical I/0
lio_max Maximum logical 1/0
lio_avg Average logical 1/0
pio_min Minimum physica 1/0
pio_max Maximum physical I/O
pio_avg Average physica 1/0

cnt Number of times the query has been executed

abort_cnt | Number of times a query is aborted by the resource governor when a
resource limit is exceeded

gtext Query text

Average values in this view are calculated using this formula:

new _avg = (old avg * old count + new value)/ (old count + 1) = old avg +
round ((new_value - old avg)/(old count + 1))

Thisis an example of the sysquerymetrics view:

select * from sysquerymetrics

uid gid hashkey id sequence exec_min

exec_max exec_avg elap min elap max elap avg lio min
lio max lio avg pio min pio max pio_avg cnt abort cnt
gtext

1 1 106588469 480001710 0 0

0 0 16 33 25 4

4 4 0 4 2 2 0

select distinct cl from t metricsl where c2 in (select c2 from t metrics2)

Query Processing and Abstract Plans 303

Using metrics

Using metrics

304

The above example displays arecord for a SQL statement. The query text of
the statement is select distinct c1 from t_metrics1 where c2 in (select c2 from
t_metrics2). This statement has been executed twice so far (cnt = 2). The
minimum elapsed time is 16 milliseconds, the maximum elapsed timeis 33
milliseconds, and the average elapsed timeis 25 milliseconds. All the
execution times are 0, and this may be due to the CPU execution time being
less than 1 millisecond. The maximum physical I/O is 4, which is consistent
with the maximum logical 1/0. However, the minimum physical 1/0is0
because dataisalready in cachein the second run. Thelogical /O, at 4, should
be static whether or not the dataisin memory.

Use the information produced by QP metrics to identify:

* Query performance regression

* Most “expensive’ query from abatch of running queries
* Most frequently run queries

When you have information on the queries that may be causing problems, you
can tune the queries to increase efficiency.

For example, identifying and fine-tuning an expensive query may be more
effective than tuning the cheaper ones in the same batch.

You can also identify the queries that are run most frequently, and fine-tune
them to increase efficiency.

Turning on query metrics may involve extral/O for every query being run, so
there may be performance impact. However, also consider the benefits
mentioned above. You may want to gather statistical information from
monitoring tables instead of turning on metrics.

Both QP metrics and monitoring tables can be used to gather statistical
information. However, you can use QP metricsinstead of the monitoring tables
to gather aggregated historical query information in apersistent catal og, rather
than have transient information from the monitor tables.

Adaptive Server Enterprise

CHAPTER 11 Query Processing Metrics

Examples

You can use QP metrics to identify specific queries for tuning and possible
regression on performance.

Identifying the most expensive statement

Typically, to find the most expensive statement as the candidate for tuning,
sysquerymetrics provides CPU execution time, elapsed time, logical 10, and
physical 10 as optionsfor measure. For example, atypical measureisbased on
logical 10. Use the following query to find the statements that incur too many
|Os as the candidates for tuning:

select lio_avg, qtext from sysquerymetrics order by lio_avg
lio avg gtext

select cl, c2 from t metricsl where cl = 333

4

select distinct cl from t metricsl where c2 in (select c2 from t metrics2)
6

select count (t_metricsl.cl) from t metricsl, t_metrics2,

t_metrics3 where (t_metricsl.c2 = t_metrics2.c2 and

t metrics2.c2 = t metrics3.c2 and t metrics3.c3 = 0)

164

select min(cl) from t metricsl where c2 in (select t metrics2.c2 from
t_metrics2, t_metrics3 where (t_metrics2.c2 = t metrics3.c2 and t_metrics3.c3
= 1))

(4 rows affected)

The best candidate for tuning can be seen in the last statement of the above
results, which has the biggest value for average logical 10.

Identifying the most frequently used statement for tuning

If aquery isused frequently, fine-tuning may improveits performance. I dentify
the most frequently used query using the select statement with order by:

select elap_avg, cnt, gtext from sysquerymetrics order by cnt

elap avg cnt
gtext

Query Processing and Abstract Plans 305

Clearing the metrics

0 1
select cl, c2 from t metricsl where cl = 333
16 2

select distinct ¢l from t metricsl where c2 in (select c2 from t metrics2)
24 3

select min(cl) from t metricsl where c2 in (select t metrics2.c2 from
t_metrics2, t_metrics3 where (t_metrics2.c2 = t metrics3.c2 and t_metrics3.c3
= 1))

78 4

select count (t metricsl.cl) from t metricsl, t metrics2, t metrics3 where
(t_metricsl.c2 = t_metrics2.c2 and t_metrics2.c2 = t_metrics3.c2 and
t metrics3.c3 = 0)

(4 rows affected)

Identifying possible performance regression

In some cases, when a server is upgraded to a newer version, QP metrics may
be useful for comparing performance. To identify queriesthat may have some
degradation, use the following process:

1 Back up the QP metrics from the old server into a backup group:
sp_metrics ‘backup’, '@gid’
2 Enable QP metrics on the new server:
sp_configure “enable metrics capture”, 1

3 Compare QP metrics output from the old and new serversto identify any
queries that may have regression problems.

Clearing the metrics

Use sp_metrics ‘flush’ to flush all aggregated metrics in memory to the system
catalog. The aggregated metrics for all statements in memory are zeroed out.

The syntax of removing QP metrics from the system catalog is.
sp_metrics ‘drop’, ‘@gid’ [, ‘@id’]

306 Adaptive Server Enterprise

CHAPTER 11 Query Processing Metrics

To remove one entry, use:
sp_metrics ‘drop’, ‘<gid>’, ‘<id>’

You can al so usefilter to remove QP metrics from the system catal og, based on
some metrics conditions. The syntax is:

sp_metrics ‘filter’, ‘@gid’, [, ‘@predicate’]
For example:
sp_metrics ‘filter’,’1’,’lio_max < 100’

deletes all QP metricsin group 1 where lio_max < 100.

Restricting query metrics capture

Therearefour configuration parametersthat set the query metricsthreshold for
capture into the catalog. These parameters are useful if you want to filter out
trivial metrics before writing metricsinformation to the catalog. The syntax is:

sp_configure ‘metrics lio max’ | ‘metrics pio max’ |
‘metrics elap max’ | ‘metrics exec max’ , <value>

For example, the following will not capture those query plans for which lio is
less than 10:

sp_configure ‘metrics lio max’, 10

Understanding uid in sysquerymetrics

Example 1

Example 2

The UID of sysquerymetrics is 0 when al table names in a query that are not
qualified by user name are owned by the dbo.

select * from t1 wherecl=1

t1 isowned by dbo and is shared by different users. 0 isthe UID for the entry
into sysquerymetrics no matter which user issues the query.

select * from t2 wherecl =1

Query Processing and Abstract Plans 307

Understanding uid in sysquerymetrics

In this case, t2 isowned by userl. user1’'s UID isused for the entry in
sysquerymetrics, since t2 is unqualified and is not owned by the dbo.

Example 3 select * from ul.t3 where cl =1
Here, t3 isowned by ul and is qualified by ul, so UID Qs used.

Thisincreasesthe sharing of metrics between user IDsto reduce the number of
entries in sysqueryplans. Aggregation of metrics for identical queries with
different user IDsis done automatically. Turn on Traceflag 15361 to use the
UID of the user who issues the query.

Note QP metricsfor INSERT...SELECT/UPDATE/DELETE are captured when
at least one table isinvolved. CIS related queries and INSERT...VALUES
statements are not included.

308 Adaptive Server Enterprise

Index

Symbols
::= (BNF notation)

in SQL statements xii
, (comma)

in SQL statements xii
{} (curly braces)

in SQL statements xii
() (parentheses)

in SQL statements xii
[1 (square brackets)

in SQL statements xii

A

abstract plan cache configuration parameter 246
abstract plan derived tables 255
abstract plan dump configuration parameter 246
abstract plan groups

adding 286

creating 286

dropping 287

exporting 298

importing 298

information about 287

overview of use 236

plan associationand 236

plan captureand 236

procedures for managing 285-299
abstract plan load configuration parameter 246
abstract plan replace configuration parameter 246
abstract plans

comparing 292

copying 291

finding 290

information about 291

pattern matching 290

viewing with sp_help_gplan 291
accessing

Query Processing and Abstract Plans

query processing metrics 302
adding
abstract plan groups 286
statistics for unindexed columns
adding statistics 210
adjustment
managing runtime 174
recognizing runtime 174
reducing runtime 175
runtime 173
advanced aggregation 5
ALS
log writer 193
user log cache 191
whentouse 191

ALS, see Asynchronous Log Service 189

append union al operator 4
application design
index specification 183
associating queries with plans
plangroupsand 236
session-level 241
association key
defined 237
plan associationand 237
sp_cmp_all_gplans and 295
sp_copy_gplan and 292
attribute-insensitive operation

parallelism 128
attribute-sensitive operation
paralelism 142
automatically

update statistics 216
automatically updating
statistics 213

B

Backus Naur Form (BNF) notation

210

Xii

309

Index

between clause 7
BNF notation in SQL statements xii
brackets. See sguare brackets|]
buffers

unavailable 186
bushy space search 5

C

capturing plans
session-level 240

case sensitivity

inSQL xiii
changed system procedures 193
clearing

query processing metrics 306
clustered indexes

prefetchand 185
column-level

statistics 219
column-level statistics

generating the update statistics 224

truncate table and 220

update statistics and 220
commac(,)

in SQL statements xii
comparing abstract plans 292
composite indexes

update index statistics and 224
compute by processing 73
concurrency optimization

for small tables 206
concurrency optimization threshold

deadlocksand 206
control parallelism at sessionlevel 113
controlling paraldism for aquery 114
conventions

See also syntax

Transact-SQL syntax Xii

used in the Reference Manual i
converted

search arguments 7
copying

abstract plans 291

plangroups 294

310

plans 291, 294
covered queries

specifying cache strategy for 187
creating

abstract plan groups 286

column statistics 221
curly braces ({}) in SQL statements xii

D

data pages
prefetching 185
datatypes
join 14
datachange function
statistics 214
deadlocks
concurrency optimization threshold settings
tablescansand 206
debugging aids
set forceplanon 179
default settings
number of tablesoptimized 181
degree
setting max parallel 110
delete 48
delete 169
delete statistics command
managing statisticsand 229

deleting

plans 292, 297
density

join 13
derived

SQL tables 20
derived tables

abstract plan derived tables 255
SQL derived tables 255
differing parallel query results 118
discontinued trace commands
XML 105
distinct hashing operator 4
distinct sorted operator 4
distinct sorting operator 5
drop index command

206

Adaptive Server Enterprise

statisticsand 229

dropping
abstract plan groups 287
indexes specified withindex 183
plans 292, 297

E
elimination
partition 171
emit
operator 38
enable
paralelism 109
engine
query execution 22
equijoin
transitiveclosure 8
equivalent arguments, conversion of search arguments
to 7
exceptions
optimization goals 16
exchange
operator 122
pipemanagement 123
worker processmode 124

executing
query processing metrics 302
execution

preventing with set noexec on 29
execution of query plans 26
exists check mode 244
exporting plan groups 298
expressions

join 14

F

factors
analyzed for optimization 5
fetch-and-discard strategy 6
finding abstract plans 290
forceplan option, set 179
aternatives 180

Query Processing and Abstract Plans

Index

risksof 180
fromtable 40
function

datachange, statistics 214

G

goals

optimization 15

optimization exceptions 16
group hashing operator 5
group inserting 5
group sorted agg

operator 69
group sorted operator 5
GroupSorted (Distinct) operator 65

H

hash based table scan 130
hash join

operator 59
hash union

operator 76
hash union distinct algorithm 4
hash vector aggregate

operator 70
HashDistinctOp operator 67
histograms

join 13

steps, number of 225

110
prefetch keyword 184
rangequeriesand 184
specifying sizein queries 184
importing abstract plan groups 298
in(values list) clause 7
index intersection 5
index scan 132
clusteed, partitioned table 136

311

Index

clustered 136
covered using non-clustered global 135
globa non-clustered 132
non-clustered, partitioned table 136
non-covered, global non-clustered 133
indexes
largel/Ofor 184
search arguments 11
specifying for queries 182
update index statistics on 224
update statistics on 224
insert 48
insert 169
introduction
query processing metrics 301

J

job scheduler
update statistics 216
join
both tables with useless partitioning 146
outer 153
paralelism 143
paralelism, one table with useful partitioning 144
paralelism, replicated 148
parallelism, tables with same useful partitioning 143
serid 152
join
density 13
expressions 14
histograms 13
mixed datatypes 14
or predicates 14
ordering 14
join operator 55
joins 13
number of tables considered by optimizer 181
semi 153
tableorder in 179
jtc option, set 194

312

L

large 1/0
index leaf pages 184
likeclause 7
locking
statistics 226
logscan 45
LRU replacement strategy
specifying 188

M

mai ntenance
statistics 219
mai ntenance tasks
forced indexes 183
forceplan checking 179
max repartition degree
setting 111
max resource granularity
setting 110
mergejoin 4
operator 57
mergejoin agorith 4
merge union
operator 75
merge union al algorithm 4
merge union distinct operator
messages
dropped index 183
minor columns

update index statistics and 224

modifying abstract plans 293
MRU replacement strategy
disabling 189
specifying 188
multi table storeind 5

N

names
index clauseand 183
index prefetchand 185
nary nested loop join

Adaptive Server Enterprise

operator 61
nested loopjoin 55
nested-loop-join algorithm 4
non leading columns
sort statistics 227
nonequality operators 11
number (quantity of)
tables considered by optimizer 181

@)
object sizes
tuning 21
operations
insert, delete, update 169
operator
delete 48
emit 38

exchange 122

group sortedagg 69
hashjoin 59

hash union 76

hash vector aggregate 70
insert 48

mergejoin 57
mergeunion 75

nary nested loop join 61
remotescan 84
restrict 78

ridjoin 86

scan 38

scroll 84

sequencer 82

sort 78

sofilter 88

store 80

text delete 49
unional 74

update 48

operators

GroupSorted (Distinct) 65
HashDistinctOp 67
optimization 4

query plans 24, 37
ScalarAggOp 77

Query Processing and Abstract Plans

SortOp (Distinct) 66
vector aggregation 68
opportunistic distinct view 5

optimization

additional paths 9
example search arguments 12
factorsandyzed 5
goas 15

goals, exceptions 16
limit time optimizing query 16
operators 4

predicate transformation 9
problems 18

query transformation 7
techniques 4

optimizer

overriding 177

query 3

option

set rowcount 119

orlist 38

or predicates

join 14

order

tablesinajoin 179
ordering

join 14

output

statement 30

XML diagnogtic 98
overview

query processing 1

P

pages, data
prefetchand 185
parallel
query execution model 122
query plans 119
query processing 107
Setting max degree 110
setting max resource granularity 110
tablescan 130
unional 140

Index

313

Index

parallel degree
setting max scan 111

parallel processing
query 108

paralelism 18
attribute-insensitive operation 128
attribute-sensitive operation 142
controlling at sessionlevel 113
controlling for aquery 114
distinct vector aggregation 158
enable 109
in-partitioned vector aggregation 154
join 143

join, both tables with useless partitioning 146

join, one table with useful partitioning
join, replicated 148

join, tables with same useful partitioning
outer joins 153

query with IN list 158

query with OR clause 159

query with order by clause 161
reformatting 150

re-partitioned vector aggregation 155
semijoins 153

serid join 152

seria vector aggregation 157

setting number of worker processes 109

SQL operatoions 127

tablescan 129

two phased vector aggregation 156

vector aggregation 154
parentheses ()

in SQL statements xii
partial plans

specifying with create plan 235
partition

skew 172

tablescan 131
partition elimination 171
performance

number of tables considered by optimizer
permissions

XML 105
pipe management

exchange 123
plan dump option, set 239

314

144

143

182

plan groups
adding 286
copying 294
copyingtoatable 298
creating 286
dropping 287
dropping dl plansin 297
exporting 298
information about 287
overview of use 236
plan associationand 236
plan captureand 236
reports 287

plan load option, set 241

plan replace option, set 241

plans
changing 293
comparing 292
copying 291, 294
deleting 297
dropping 292, 297
finding 290
modifying 293
query 30
searching for 290

predicate
transformation 9

prefetch
datapages 185
disabling 187
enabling 187
queries 184

sp_cachestrategy 189
prefetch keyword

I/Osizeand 184
problems

optimizing queries 18
process_limit_action 174

Q

QP metrics See query processing metrics
queries

execution settings 29

problems optimizing 18

Adaptive Server Enterprise

specifying /O size 184
specifying index for 182
query
execution engine 22
limit optimizingtime 16
not runin parallel 173
optimizer 3
ORclause 159
parallel execution model 122
parallel processing 108
plans 30
select-into clause 165
set local variables 119
with IN list 158
with order by clause 161
query analysis
showplan and 29
sp_cachestrategy 189
query engine 22
query optimization 97
query optimizations, transformationsfor 7
query plans 22, 33
execution 26
operators 24, 37
paralle 119
suboptimal 182
query processing
overview 1
paralle 107
query processing metrics
accessing 302
clearing 306
executing 302
introduction 301
sysquerymetricsview 304
using 304
query processing, understanding 1

R
range queries
largel/Ofor 184
reduce
impact 228
referential integrity constraints 50

Query Processing and Abstract Plans

Index

reformatting

paralelism 150
remote scan

operator 84
replicated partitioning 5
reports

cache strategy 189
plangroups 287
restrict

operator 78

results

differing parallel query 118
rid join

operator 86

ridscan 43

row counts

statistics, inaccurate 230
runtime

adjustment 173
managing adjustment 174
recognizing adjustment 174
reducing adjustments 175

S
samplicing

use for updating statistics 212
sampling

Statistics 212
scalar aggregation

serial 139

two phased 138
ScalarAggOp operator 77
scan

clusteredindex 136

clustered index on partitioned tables 136

index 132

index globa non-clustered 132

index non-covered of globa non-clustered 133
index, covered use non-clustered global 135
local indexes 136

non-clustered, partitioned table 136

operator 38
scan types
statistics 226

315

Index

scroll
operator 84
search arguments
converted 7
example of optimization 12
indexes 11
transitiveclosure 7
searching for abstract plans 290
select command
specifyingindex 182

select-into
query 165
sequencer
operator 82
serid
scalar aggregation 139
unional 141
seria tablescan 129
Set

local variables 119
XML command 98

set
examples 114
set command
forceplan 179
jtc 194

plan dump 239
plan exists 244
plan load 241
plan replace 241
sort_merge 193
set commands, tableof 20
set option show_missing_stats on command 19
set options, tableof 20
set plan dump command 240
set plan exists check 244
set plan load command 241
set plan replace command 241
set rowcount option 119
Setting
max scan parallel degree 111
number of worker processes 109
setting mac parallel degree 110
setting max repartition degree 111
setting max resource granularity 110
showplan

316

query plansASE 15.0 30
statement level output 30

using 29, 175
skew

partition 172
sort

operator 78

statistics, unindexed columns 227
sort requirements
statistics 226
sort_merge option, set 193
SortOp (Distinct) operator 66
sp_add_gpgroup system procedure 286
sp_cachestrategy system procedure 189
sp_chgattribute system procedure
concurrency_opt_threshold 206
sp_cmp_gplans system procedure 292
sp_copy_all_gplans system procedure 294
sp_copy_gplan system procedure 291
sp_drop_all_gplans system procedure 297
sp_drop_gpgroup system procedure 287
sp_drop_gplan system procedure 292
sp_export_gpgroup system procedure 298
sp_find_gplan system procedure 290
sp_help_gpgroup System procedure 287
sp_help_gplan system procedure 291
sp_import_gpgroup System procedure 298
sp_set_gplan system procedure 293
sproc optimize timeout limit parameter 17
sofilter
operator 88
SQL
paralelism 127
SQL derived tables 255
SQL tables
derived 20
SQL UNION operator 4
square brackets| |
in SQL statements xii
statement level output 30
statistics
adding for unindexed columns 210
automatically updating 213
column-level 219, 221, 224
creating column statistics 221
datachange function 214

Adaptive Server Enterprise

deleting table and column with delete statistics

229
drop index and 220
getting additional 222

locking 226
sampling 212
scantypes 226

sort requirements 226

sorts for unindexed columns 227
truncate table and 220

update statistics 210

update statistics automaticaly 216
updating 209, 221

using 207

using job scheduler 216

statistics clause, create index command 220

dtatisticsmaintenance 219
statisticssorts, non leading columns 227
store

operator 80
storeindex 5
stored procedures optimized 6
subqueries 162
symbols

in SQL statements xii
syntax conventions, Transact-SQL xii
sysquerymetrics view

query processing metrics 304
system procedures, changed 193

T

table count option, set 181
table scan

hash based 130
paralled 130
paralelism 129
partition based 131
serial 129
table scans

forcing 182
techniques
optimization 4
testing

index forcing 183

Query Processing and Abstract Plans

text delete
operator 49
timeout value 17
transformation
predicate 9
transformations
query optimization 7
transformations for query optimization
transitive closure
equijoin 8
search arguments 7
triggersoptimized 6
truncate table command
column-level statisticsand 220
tuning
according to object size 21

advanced techniquesfor 177-206

range queries 183
two phased scalar aggregation 138

U

understanding query processing 1
unindexed columns 210
union all
operator 74
parallel 140
serial 141
update 48
update 169
update all statistics 221
update all statistics command 225
updateindex statistics 221, 224, 228
update statistics 210
update statistics command
column-level 224
column-level statistics 224
managing statisticsand 219
with consumers clause 228
updating
statistics 209, 212, 221
updating statistics
usesampling 212
user IDs
changing with sp_import_gpgroup

7

298

Index

317

Index

user log cache, inALS 191
using
query processing metrics 304
showplan 175
Using Asynchronous log service 189
Using Asynchronous log service, ALS 189

Vv

variables

setloca 119

vector aggregation 154
distinct 158
in-partitioned 154
re-partitioned 155

serial 157

two phased 156
vector aggregation operators 68
view

sysquerymetrics, query processing metrics 304

W

whentouse ALS 191
with statistics clause, create index command 220
worker process mode
exchange 124
worker processes
setting number 109

X

XML
diagnostic output 98
discontinued trace commands 105
permissions 105

XML set 98

318 Adaptive Server Enterprise

	Performance and Tuning Series: Query Processing and Abstract Plans
	About This Book
	CHAPTER 1 Understanding Query Processing
	Query optimizer
	Factors analyzed in optimizing queries
	Transformations for query optimization
	Search arguments converted to equivalent arguments
	Search argument transitive closure applied where applicable
	equijoin predicate transitive closure applied where applicable
	Predicate transformation and factoring to provide additional optimization paths

	Handling search arguments and useful indexes
	Nonequality operators

	Handling joins
	join density and join histograms
	joins with mixed datatypes
	joins with expressions and or predicates
	join ordering

	Optimization goals
	Exceptions
	Limiting the time spent optimizing a query

	Parallelism
	Optimization issues
	Query execution engine
	Query plans
	Query plan operators
	Query plan execution

	CHAPTER 2 Using showplan
	Displaying a query plan
	Query plans in Adaptive Server Enterprise 15.0

	Statement-level output
	Query plan shape
	Query plan operators
	emit operator
	scan operator
	from cache message
	from or list
	from table
	I/O size messages
	rid scan
	log scan
	delete, insert, and update operators
	text delete operator
	Query plans for referential integrity enforcement
	join operators
	NestedLoopJoin
	MergeJoin
	HashJoin
	NaryNestedLoopJoin operator
	Distinct operators
	GroupSorted (Distinct) operator
	SortOp (Distinct) operator
	HashDistinctOp operator
	Vector aggregation operators
	GroupSortedOp (Aggregation) operator
	HashVectorAgOp operator
	GroupInsertingOp
	compute by message

	Union operators
	union all operator
	merge union operator
	hash union
	ScalarAggOp operator
	restrict operator
	sort operator
	store operator
	sequencer operator
	remote scan operator
	scroll operator
	rid join operator
	sqfilter operator
	exchange operator

	Instead-of trigger operators
	instead-of trigger operator
	CURSOR SCAN operator

	CHAPTER 3 Displaying Query Optimization Strategies and Estimates
	set commands for text format messages
	set commands for XML format messages
	Using show_execio_xml to diagnose query plans

	Usage scenarios
	Permissions for set commands
	Tracing commands

	CHAPTER 4 Parallel Query Processing
	Vertical, horizontal, and pipelined parallelism
	Queries that benefit from parallel processing
	Enabling parallelism
	Setting the number of worker processes
	Setting max parallel degree
	Setting max resource granularity
	Setting max repartition degree
	Setting max scan parallel degree
	Setting prod-consumer overlap factor
	Setting min pages for parallel scan
	Setting max query parallel degree

	Controlling parallelism at the session level
	set command examples

	Controlling query parallelism
	Query-level parallel clause examples

	Using parallelism selectively
	Using parallelism with large numbers of partitions
	When parallel query results differ
	Queries that use set rowcount
	Queries that set local variables

	Understanding parallel query plans
	Adaptive Server parallel query execution model
	exchange operator
	Pipe management
	Worker process model

	Using parallelism in SQL operations
	Parallelism of attribute-insensitive operation
	Scalar aggregation
	union all
	Parallelism of attribute-sensitive operation
	Subqueries
	select into clauses
	insert/delete/update

	Partition elimination
	Partition skew
	Why queries do not run in parallel
	Runtime adjustment
	Recognizing and managing runtime adjustments
	Using set process_limit_action
	Using showplan
	Reducing the likelihood of runtime adjustments

	CHAPTER 5 Controlling Optimization
	Special optimizing techniques
	Specifying query processor choices
	Specifying table order in joins
	Risks of using forceplan
	Things to try before using forceplan

	Specifying the number of tables considered by the query processor
	Specifying an query index
	Risks
	Things to try before specifying an index

	Specifying I/O size in a query
	Index type and large I/O size
	When prefetch specification is not followed
	setting prefetch

	Specifying cache strategy
	In select, delete, and update statements

	Controlling large I/O and cache strategies
	Getting information on cache strategies

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer

	Changed system procedures

	Enabling and disabling merge joins
	Enabling and disabling hash joins
	Enabling and disabling join transitive closure
	Suggesting a degree of parallelism for a query
	Query level parallel clause examples

	Optimization goals
	Setting optimization goals

	Optimization criteria
	Limiting optimization time
	Controlling parallel optimization
	Specifying the maximum number of worker processes
	Specifying the number of worker processes available for parallel processing
	Specifying the percentage of resources available to process a query
	Specifying the number of worker processes available to partition a data stream

	Concurrency optimization for small tables
	Changing locking scheme

	CHAPTER 6 Using Statistics to Improve Performance
	Statistics maintained in Adaptive Server
	Definitions

	Importance of statistics
	Updating statistics
	Adding statistics for unindexed columns
	update statistics commands
	Using sampling for update statistics

	Automatically updating statistics
	What is the datachange function?

	Configuring automatic update statistics
	Using Job Scheduler to update statistics
	Examples of updating statistics with datachange

	Column statistics and statistics maintenance
	Creating and updating column statistics
	When additional statistics may be useful
	Adding statistics for a column with update statistics
	Adding statistics for minor columns with update index statistics
	Adding statistics for all columns with update all statistics

	Choosing step numbers for histograms
	Disadvantages of too many steps
	Choosing a step number

	Scan types, sort requirements, and locking
	Sorts for unindexed or non-leading columns
	Locking, scans, and sorts during update index statistics
	Locking, scans and sorts during update all statistics
	Using the with consumers clause
	Reducing update statistics impact on concurrent processes

	Using the delete statistics command
	When row counts may be inaccurate

	CHAPTER 7 Introduction to Abstract Plans
	Overview
	Managing abstract plans
	Relationship between query text and query plans
	Limits of options for influencing query plans

	Full versus partial plans
	Creating a partial plan

	Abstract plan groups
	How abstract plans are associated with queries

	CHAPTER 8 Creating and Using Abstract Plans
	Using set commands to capture and associate plans
	Enabling plan capture mode with set plan dump
	Associating queries with stored plans
	Using replace mode during plan capture
	When to use replace mode

	Using dump, load, and replace modes simultaneously
	Using dump and load to the same group
	Using dump and load to different groups

	set plan exists check option
	Using other set options with abstract plans
	Using showplan
	Using noexec
	Using fmtonly
	Using forceplan

	Server-wide abstract plan capture and association modes
	Creating plans using SQL
	Using create plan
	Using the plan clause

	CHAPTER 9 Abstract Query Plan Guide
	Introduction
	Abstract plan language
	Queries, access methods, and abstract plans
	Derived tables

	Identifying tables
	Identifying indexes
	Specifying join order
	Shorthand notation for joins
	Join order examples
	Match between execution methods and abstract plans
	Specifying join order for queries using views

	Specifying the join type
	Specifying partial plans and hints
	Grouping multiple hints
	Inconsistent and illegal plans using hints

	Creating abstract plans for subqueries
	Materialized subqueries
	Flattened subqueries
	Example of changing the join order in a flattened subquery
	Nested subqueries
	Subquery identification and attachment
	More subquery examples: reading ordering and attachment
	Modifying subquery nesting

	Abstract plans for materialized views
	Abstract plans for queries containing aggregates
	Abstract plans for queries containing unions
	Using abstract plans when queries need ordering
	Specifying the reformatting strategy
	Specifying the OR strategy
	When the store operator is not specified
	Abstract plans for parallel processing

	Tips on writing abstract plans
	Comparing plans before and after
	Effects of enabling server-wide capture mode
	Time and space to copy plans

	Abstract plans for stored procedures
	Procedures and plan ownership
	Procedures with variable execution paths and optimization

	Ad hoc queries and abstract plans

	CHAPTER 10 Managing Abstract Plans with System Procedures
	System procedures for managing abstract plans
	Managing an abstract plan group
	Creating a group
	Dropping a group
	Getting information about a group
	Renaming a group

	Finding abstract plans
	Managing individual abstract plans
	Viewing a plan
	Copying a plan to another group
	Dropping an individual abstract plan
	Comparing two abstract plans
	Changing an existing plan

	Managing all plans in a group
	Copying all plans in a group
	Comparing all plans in a group
	Dropping all abstract plans in a group

	Importing and exporting groups of plans
	Exporting plans to a user table
	Importing plans from a user table

	CHAPTER 11 Query Processing Metrics
	Overview
	Executing QP metrics
	Accessing metrics
	sysquerymetrics view

	Using metrics
	Examples
	Identifying the most expensive statement
	Identifying the most frequently used statement for tuning
	Identifying possible performance regression

	Clearing the metrics
	Restricting query metrics capture
	Understanding uid in sysquerymetrics

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

